Problem1: Smallest Autobiographical Number:

A number with ten digits or less is called autobiographical if its first digit (from the left) indicates the number of zeros it contains,the second digit the number of ones, third digit number of twos and so on.

For example: 42101000 is autobiographical.

Find, with explanation, the smallest autobiographical number.

Solution of Problem 1

Problem 2: Fit Rectangle:

A rectangle has dimensions $ 39.375$ cm $ \times 136.5$ cm.

  • Find the least number of squares that will fill the rectangle.
  • Find the least number of squares that will fill the rectangle, if every square must be the same size and Find the largest square that can be tiled to completely fill the rectangle.

Solution of Problem 2

Solutions of Problem 1:

The restrictions which define an autobiographical number make it straightforward to find the lowest one. It cannot be 0, since by
definition the first digit must indicate the number of zeros in the number. Presumably then, the smallest possible autobiographical number will contain only one 0.If this is the case, then the first digit must be 1. 10 is not a candidate because the second digit must indicate the number of 1s in the number–in this case, 1. So If the
number contains only one zero, it must contain more than one 1.
(If it contained one 1 and one 0, then the first two digits
would be 11, which would be contradictory since it actually contains two 1s).
Again, presumably the lowest possible such number will contain the lowest
possible number of 1s, so we try a number with one 0 and two 1s. It will be of the form: 12-0–..
Now, there is one 2 in this number, so the first three digits must be 121. To meet all the conditions discussed above, we can simply take a 0 onto the end of this to obtain 1210, which is
the smallest auto-biographical number.

Solution of Problem 2:

We solve the second and third parts of the question

We convert each number to a fraction and get a common denominator, then find the gcd (greatest common divisor) of the numerators.

That is, with side lengths $ 39.375$ cm and $ 136.5$ cm , we convert those numbers to fractions (with a common
$ 39.375 = \dfrac{315}{8}$ .

$ 136.5 = \dfrac{273}{2} = \dfrac{1092}{8}$ .

Now we need to find the largest common factor of 315 and 1092.
Which is 21. So $ \dfrac{21}{8}=2.625$ is the largest number that divides evenly into the two numbers $ 39.375$ and $ 136.5$ .
There will be $ \dfrac{1092}{21} \times \dfrac{315}{21} = 52 \times 15 = 780$ squares, each one a $ 2.625$ cm $ \times 2.625$ cm square needed to fill the rectangle (52 in each row,with 15 rows).

Now we shall solve the first part.
Number of squares lengthwise is 52 and breadthwise is 15. Now we will combine these squares in order to find least number of squares to fill the rectangle. First three squares would be of
dimension 15 by 15. In this way length of 45 units is utilized. Now the rectangle which is left with us excluding three squares is 7 by 15. Again in the same way we can make two squares of dimension 7 by 7. In this way breadth of 14 units is utilized.
Now we are left with the rectangle of dimension 7 by 1.
These can further be subdivided into seven squares each of
dimension 1 by 1. In this way the least number of squares to fill the
rectangle is 3 + 2+ 7 = 12. The required answer is 12.
Note that the three numbers 3, 2, and 7 are involved in the Euclidean Algorithm for finding the g.c.d.!

Source: Internet

1 comment
Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

You May Also Like

TeXStudio is the most complete LaTeX Editor

A detailed and practical review of one of the most amazing LaTeX editors available for all desktop platforms like Windows, Mac and Linux. TeXStudio is a team project of Benito van der Zander, Jan Sundermeyer, Daniel Braun and Tim Hoffmann, forked from the TeXMaker application, a non-open source application, which open-source development stalled in 2009.

What is Real Analysis?

Real analysis is the branch of Mathematics in which we study the development on the set of real numbers. We reach on real numbers through a series of successive extensions and generalizations starting from the natural numbers. In fact, starting from the set of natural numbers we pass on successively to the set of integers, the set of rational numbers…

What’s the question, if the answer is ‘No!’

Infinitely many answers questions are possible to the answer, “No”. So, our real task should be to find one of THOSE many, which seems to be a perfect one. A simple and the first ever logical approach of giving answers to a question is to derive answers from the question, that is, replace some words of the question with reasonable ones and…

New Math Series: Selected Topics in Functional Analysis

This series of study notes is aimed for post-graduate (M.A/M.Sc.) students of Indian & international universities. The study of functional analysis can be started after basic topology and set theory courses. In this introductory article we will start with some elementary yet important definitions and notations from analysis. We will finish this article with the definition of Norm & Normed…

Fermat Numbers

Fermat Number, a class of numbers, is an integer of the form $ F_n=2^{2^n} +1 \ \ n \ge 0$ . For example: Putting $ n := 0,1,2 \ldots$ in $ F_n=2^{2^n}$ we get $ F_0=3$ , $ F_1=5$ , $ F_2=17$ , $ F_3=257$ etc. Fermat observed that all the integers $ F_0, F_1, F_2, F_3, \ldots$ were prime…

Hopalong Orbits Visualizer: Stunning WebGL Experiment

Just discovered Barry Martin’s Hopalong Orbits Visualizer — an excellent abstract visualization, which is rendered in 3D using Hopalong Attractor algorithm, WebGL and Mrdoob’s three.js project. Hop to the source website using your desktop browser (with WebGl and Javascript support) and enjoy the magic. PS: Hopalong Attractor Algorithm Hopalong Attractor predicts the locus of points in 2D using this algorithm…