Problem1: Smallest Autobiographical Number:

A number with ten digits or less is called autobiographical if its first digit (from the left) indicates the number of zeros it contains,the second digit the number of ones, third digit number of twos and so on.

For example: 42101000 is autobiographical.

Find, with explanation, the smallest autobiographical number.

Solution of Problem 1

Problem 2: Fit Rectangle:

A rectangle has dimensions $ 39.375$ cm $ \times 136.5$ cm.

  • Find the least number of squares that will fill the rectangle.
  • Find the least number of squares that will fill the rectangle, if every square must be the same size and Find the largest square that can be tiled to completely fill the rectangle.

Solution of Problem 2

Solutions of Problem 1:

The restrictions which define an autobiographical number make it straightforward to find the lowest one. It cannot be 0, since by
definition the first digit must indicate the number of zeros in the number. Presumably then, the smallest possible autobiographical number will contain only one 0.If this is the case, then the first digit must be 1. 10 is not a candidate because the second digit must indicate the number of 1s in the number–in this case, 1. So If the
number contains only one zero, it must contain more than one 1.
(If it contained one 1 and one 0, then the first two digits
would be 11, which would be contradictory since it actually contains two 1s).
Again, presumably the lowest possible such number will contain the lowest
possible number of 1s, so we try a number with one 0 and two 1s. It will be of the form: 12-0–..
Now, there is one 2 in this number, so the first three digits must be 121. To meet all the conditions discussed above, we can simply take a 0 onto the end of this to obtain 1210, which is
the smallest auto-biographical number.

Solution of Problem 2:

We solve the second and third parts of the question
first:

We convert each number to a fraction and get a common denominator, then find the gcd (greatest common divisor) of the numerators.

That is, with side lengths $ 39.375$ cm and $ 136.5$ cm , we convert those numbers to fractions (with a common
denominator):
$ 39.375 = \dfrac{315}{8}$ .

$ 136.5 = \dfrac{273}{2} = \dfrac{1092}{8}$ .

Now we need to find the largest common factor of 315 and 1092.
Which is 21. So $ \dfrac{21}{8}=2.625$ is the largest number that divides evenly into the two numbers $ 39.375$ and $ 136.5$ .
There will be $ \dfrac{1092}{21} \times \dfrac{315}{21} = 52 \times 15 = 780$ squares, each one a $ 2.625$ cm $ \times 2.625$ cm square needed to fill the rectangle (52 in each row,with 15 rows).

Now we shall solve the first part.
Number of squares lengthwise is 52 and breadthwise is 15. Now we will combine these squares in order to find least number of squares to fill the rectangle. First three squares would be of
dimension 15 by 15. In this way length of 45 units is utilized. Now the rectangle which is left with us excluding three squares is 7 by 15. Again in the same way we can make two squares of dimension 7 by 7. In this way breadth of 14 units is utilized.
Now we are left with the rectangle of dimension 7 by 1.
These can further be subdivided into seven squares each of
dimension 1 by 1. In this way the least number of squares to fill the
rectangle is 3 + 2+ 7 = 12. The required answer is 12.
Note that the three numbers 3, 2, and 7 are involved in the Euclidean Algorithm for finding the g.c.d.!

Source: Internet

1 comment
Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

You May Also Like

Fermat Numbers

Fermat Number, a class of numbers, is an integer of the form $ F_n=2^{2^n} +1 \ \ n \ge 0$ . For example: Putting $ n := 0,1,2 \ldots$ in $ F_n=2^{2^n}$ we get $ F_0=3$ , $ F_1=5$ , $ F_2=17$ , $ F_3=257$ etc. Fermat observed that all the integers $ F_0, F_1, F_2, F_3, \ldots$ were prime…

381654729 : An Interesting Number Happened To Me Today

You might be thinking why am I writing about an individual number? Actually, in previous year annual exams, my registration number was 381654729. Which is just an ‘ordinary’ 9-digit long number. I never cared about it- and forgot it after exam results were announced. But today morning, when I opened “Mathematics Today” magazine’s October 2010, page 8; I was brilliantly…

Free Online Algebra and Topology Books

This is a brief list of free e-books on Algebra, Topology and Related Mathematics. I hope it will be very helpful to all students and teachers searching for high quality content. If any link is broken, please email me at gaurav(at)gauravtiwari.org. Abstract Algebra OnLine by Prof. Beachy This site contains many of the definitions and theorems from the area of…

Claim for a Prime Number Formula

Dr. SMRH Moosavi has claimed that he had derived a general formula for finding the $ n$ -th prime number. More details can be found here at PrimeNumbersFormula.com and a brief discussion here at Math.SE titled  “Formula for the nth prime number: discovered?” SOME MORE EXCERPTS ARE HERE:

Just another way to Multiply

Multiplication is probably the most important elementary operation in mathematics; even more important than usual addition. Every math-guy has its own style of multiplying numbers. But have you ever tried multiplicating by this way? Exercise: $ 88 \times 45$ =? Ans: as usual :- 3960 but I got this using a particular way: 88            45…

How many apples did each automattician eat?

Four friends Matt, James, Ian and Barry, who all knew each other from being members of the Automattic, called Automatticians, sat around a table that had a dish with 11 apples in it. The chat was intense, and they ended up eating all the apples. Everybody had at least one apple, and everyone know that fact, and each automattician knew…