Part I:

A fox chases a rabbit. Both run at the same speed $ v$ . At all times, the fox runs directly toward the instantaneous position of the rabbit , and the rabbit runs at an angle $ \alpha $ relative to the direction directly away from the fox. The initial separation between the fox and the rabbit is $ l$ .

When and where does the fox catch the rabbit (if it does)? If it never does, what is their eventual separation?

Part II:

Similarly think about the same situation, except now let the rabbit always move in the straight line of its initial direction in above part of the question.

When and where does the fox catch the rabbit (if it does)? If it never does, what is their eventual separation?


Part I

The relative speed of the fox and the rabbit, along the line connecting them, is always $ v_{\text{rel}}= v- v \cos \alpha$ . Therefore, the total time needed to decrease their separation from $ l$ to zero is $ T=\dfrac{l}{v-v \cos \alpha} =\dfrac{l}{v(1-\cos \alpha)} \ \ldots (1)$ which is valid unless $ \alpha=0$ , in which case the fox never catches the rabbit.
The location of their meeting is a little trickier to obtain. We have two methods to do :


Imagine that the rabbit chases another rabbit, which chases another rabbit, etc. Each animal runs at an angle $ \alpha$ relative to the direction directly away from the animal chasing it. The initial positions of all the animals lie on a circle, which is easily seen to have radius $ R=\dfrac{l/2}{\sin (\alpha/2)} \ \ldots (2)$ .
The center of the circle is the point, O, which is the vertex of the isosceles triangle with vertex angle $ \alpha$ , and with the initial fox and rabbit positions as the othe two vertices. By symmetry, the positions of the animals at all times must lie on a circle with center O. Therefore, O, is the desired point where they meet. The animals simply spiral into O.


An equivalent solution is the the following:

At all times, the rabbit’s velocity vector is obtained by rotating the fox’s velocity vector by angle $ \alpha$ . The meeting point O, is therefore the vertex of the above mentioned isosceles triangle,


The speed of the rabbit in the direction orthogonal to the line connecting the two animals in $ v \sin \alpha$ . Therefore, during a time $ dt$ , the direction of the fox’s motion changes by an angle $ d\theta =\dfrac {v \sin \alpha}{l_t} dt$ , where $ l_t$ is the separation at time $ t $ . Hence the change in the fox’s velocity has magnitude $ |d\overrightarrow{v}|=v d\theta =v (v \sin \alpha dt/l_t)$ . The vector $ d\overrightarrow{v}$ is orthogonal to $ \overrightarrow{v}$ , therefore, to get the $ x$ -component of $ d\overrightarrow{v}$ , we need to multiply $ |d\overrightarrow{v}|$ by $ v_y/v$ . Similar reasoning holds for $ y$ -component of $ d\overrightarrow{v}$ , so we arrive at the two equations $ \dot{v_x}= \frac{vv_y \sin \alpha}{l_t} \ \ldots (3)$ $ \dot{v_y}=- \frac{vv_x \sin \alpha}{l_t} \ \ldots (4)$
Now, we know that $ l_t =\{ l-v(1-\cos \alpha) t \}$ . Multiplying the above equations (3) and (4) by $ l_t$ , and integrating from the initial to final times, yields $ v_{x,0}l+v(1-\cos \alpha)X=v \sin \alpha \, Y \ \ldots (5)$ $ v_{y,0}l+v(1-\cos \alpha)Y=-v \sin \alpha \, X \ \ldots (6)$
where (X,Y) is the total displacement vector and $ (v_{x,0},v_{y,0})$ is the initial velocity vector. Putting all the X and Y terms on the right sides, and squaring and adding the equations, we get $ l^2v^2=(X^2+Y^2)(v^2 \sin^2 \alpha +v^2{(1-\cos \alpha)}^2). \ \ldots (7)$ Therefore , the net displacement is
$ R=\sqrt{X^2+Y^2}=\dfrac{l}{\sqrt{2(1-\cos \alpha)}}=\dfrac{l/2}{\sin (\alpha/2)} \ \ldots (8)$
To find the exact location, we can, without loss of generality, set $ v_{x,0} =0$ , in which case we find $ Y/X=(1-\cos \alpha)/\sin \alpha =\tan \alpha/2$ . This agrees with the result of the first solution. $ \Box$

Part II:


Let $ A(t)$ and $ B(t)$ be the positions of the fox and the rabbit respectively. Let $ C(t)$ be the foot of the perpendicular dropped from $ A$ to the line of the rabbit’s path. Let $ \alpha_t$ be the angle, dependent to the time, at which the rabbit moves relative to the direction directly away from the fox (so at $ t=0, \ \alpha_0=\alpha$ and at $ t=\infty , \ \alpha_{\infty}=0$ ).

The speed at which the distance AB decreases is equal to $ v-v \cos \alpha_t$ . Therefore, the sum of the distances AB and CB doesn’t change. Initially, the sum is $ l+l \cos \alpha$ and in the end , it is $ 2d$ where $ d$ is desired eventual separation. Therefore, the desired eventual separation
$ d=\dfrac{l(1+\cos \alpha)}{2} \ \ldots (9)$


Let $ \alpha_t$ be defined as in the first solution, and let $ l_t$ be the separation at time $ t$ . The speed of the rabbit in the direction orthogonal to the line connecting the two animals is $ v \sin \alpha_t$ . The separation is $ l_t$ , so the angle $ \alpha_t$ changes at a rate $ \dot{\alpha_{t}}= – \dfrac{v \sin \alpha_t}{l_t} \ \ldots (10)$ . And $ l_t$ changes at a rate $ \dot{l_t}=-v(1-\cos \alpha_t) \ \ldots (11)$ .
Taking the quotient of the above two equations, separating variables, gives a differential equation $ \dfrac{\dot{l_t}}{l_t} = \dfrac {\dot{\alpha_t}(1-\cos \alpha_t)}{\sin \alpha_t} \ \ldots (12)$ which on solving gives $ \ln (l_t) = -\ln {(1+\cos \alpha_t)} + \ln (k) \ \ldots (13)$ . Where $ k$ is the constant of integration. Which gives $ k=l_t (1+\cos \alpha_t) \ \ldots (14)$ . Applying initial conditions $ k_0 = l_0 (1+\cos \alpha_0)= l(1+\cos \alpha) \ \ldots (15)$ . Therefore from (14), we get $ l(1+\cos \alpha) = l_t(1+\cos \alpha_t)$ , or $ l_t= \dfrac{l(1+\cos \alpha)}{1+\cos \alpha_t}$ .
Setting $ t= \infty$ and using $ \alpha_{\infty} =0$ , gives the final result $ l_{\infty} = \dfrac{l(1+\cos \alpha)}{2}$ . $ \Box$ .


The solution of Part II is valid for all $ \alpha$ except $ \alpha= \pi$ . If $ \alpha = \pi$ , the rabbit run directly towards the fox and they will meet halfway in time $ l/2v$ .


Feel free to ask questions, send feedback and even point out mistakes. Great conversations start with just a single word. How to write better comments?
  1. I am not sure what you mean by a “rabbit stop at angle alpha”. I’d like to solve the problem, but the only way I could get a hint is to read your solution. Frustrating.

    [Fixed – Thanks]

  2. Oh my God! This solution is fantastic! I’ve tried some differential equations with relative positions in cartesian coordinates and polar coordinates, but your coordinates are much more elegant! I’m so satisfied!

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

You May Also Like

Chess Problems

In how many ways can two queens, two rooks, one white bishop, one black bishop, and a knight be placed on a standard $ 8 \times 8$ chessboard so that every position on the board is under attack by at least one piece? Note: The color of a bishop refers to the color of the square on which it sits,…
px Gregory XIII
Read More

Calendar Formula: Finding the Week-days

This is the last month of the glorious prime year 2011. We are all set to welcome upcoming 2012, which is not a prime but a leap year. Calendars have very decent stories and since this blog is based on mathematical approach, let we talk about the mathematical aspects of calendars. The international calendar we use is called Gregorian Calendar,…

Just another way to Multiply

Multiplication is probably the most important elementary operation in mathematics; even more important than usual addition. Every math-guy has its own style of multiplying numbers. But have you ever tried multiplicating by this way? Exercise: $ 88 \times 45$ =? Ans: as usual :- 3960 but I got this using a particular way: 88            45…
Read More

How to Revise Physics syllabus for JEE Main in Just 1 Month?

With JEE Main 2019 is scheduled to be conducted from 6th – 20th January 2019, you have just one month left to give your one-year preparation a sure-shot success. If you are wondering how to start your revision for JEE Main Syllabus for Physics section in order to crack the JEE Main exam 2019 in 1 month, we are here…

Dedekind’s Theory of Real Numbers

Intro Let $ \mathbf{Q}$ be the set of rational numbers. It is well known that $ \mathbf{Q}$ is an ordered field and also the set $ \mathbf{Q}$ is equipped with a relation called “less than” which is an order relation. Between two rational numbers there exists an infinite number of elements of $ \mathbf{Q}$. Thus, the system of rational numbers seems…

Hopalong Orbits Visualizer: Stunning WebGL Experiment

Just discovered Barry Martin’s Hopalong Orbits Visualizer — an excellent abstract visualization, which is rendered in 3D using Hopalong Attractor algorithm, WebGL and Mrdoob’s three.js project. Hop to the source website using your desktop browser (with WebGl and Javascript support) and enjoy the magic. PS: Hopalong Attractor Algorithm Hopalong Attractor predicts the locus of points in 2D using this algorithm…