Mathematical Notations
List of the most used mathematical notations that are used in expressions and formulas.
Skip to:
Essential Notations
$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \cdots + a_n$$
Summation notation or Sigma notation
$$\prod_{i=1}^{n} a_i = a_1 \cdot a_2 \cdot \cdots \cdot a_n$$
Product notation or Pi notation
$$\int_a^b f(x) \, dx$$ Integral notation
$$\lim_{x \to a} f(x) = L$$ Limit notation
$$\frac{d}{dx} f(x) = f'(x)$$ Derivative notation [Leibniz's notation]
$$\frac{\partial}{\partial x} f(x, y)$$ Partial derivative notation
$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$ Vector notation
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$ Matrix notation
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$ Binomial coefficient notation
$$A = \{x \in \mathbb{R} : x^2 < 4\}$$ Set notation
Conditionals and Operators
- $ r /; c$ : Relation $ r $ holds under the condition $ c$ .
- $ a=b$ : The expression $a$ is mathematically identical to $ b$ .
- $ a \ne b$ : The expression a is mathematically different from $ b$ .
- $ x > y$ : The quantity $ x$ is greater than quantity $ y$ .
- $ x \ge y$ : The quantity $ x$ is greater than or equal to the quantity $ y$ .
- $ x < y$ : The quantity $ x$ is less than quantity $ y$ .
- $ x \le y$ : The quantity $ x$ is less than or equal to quantity $ y$ .
- $ P := Q$ : Statement $ P$ defines statement $ Q$ .
- $ a \wedge b$ : a and b.
- $ a \vee b$ : a or b.
- $ \forall a$ : for all $ a$ .
- $ \exists$ : [there] exists.
- $ \iff$ : If and only if.
Sets & Domains
- $ \{ a_1, a_2, \ldots, a_n \}$ : A finite set with some elements $ a_1, a_2, \ldots, a_n$ .
- $ \{ a_1, a_2, \ldots, a_n \ldots \}$ : An infinite set with elements $ a_1, a_2, \ldots$
- $ \mathrm{\{ listElement /; domainSpecification\}}$ : A sequence of elements `listElement` with some `domainSpecifications` in the set. For example, $ \{ x : x=\frac{p}{q} /; p \in \mathbb{Z}, q \in \mathbb{N^+}\}$ $ a \in A$ : $ a$ is an element of the set A.
- $ a \notin A$ : a is not an element of the set A.
- $ x \in (a,b)$ : The number x lies within the specified interval $ (a,b)$ .
- $ x \notin (a,b)$ : The number x does not belong to the specified interval $ (a,b)$.
Standard Set Notations
- $ \mathbb{N}$ : the set of natural numbers $ \{0, 1, 2, \ldots \}$
- $ \mathbb{N}^+$ : The set of positive natural numbers: $ \{1, 2, 3, \ldots \}$
- $ \mathbb{Z}$ : The set of integers $ \{ 0, \pm 1, \pm 2, \ldots\}$
- $ \mathbb{Q}$ : The set of rational numbers
- $ \mathbb{R}$ : The set of real numbers
- $ \mathbb{C}$ : The set of complex numbers
- $ \mathbb{P}$ : The set of prime numbers.
- $ \{ \}$ : The empty set.
- $ \{ A \otimes B \} $ : The ordered set of sets $ A$ and $ B$ .
- $ n!$ : Factorial of n: $ n!=1\cdot 2 \cdot 3 \ldots (n-1) n /; n \in \mathbb{N}$