Here is an interesting mathematical puzzle alike problem involving the use of Egyptian fractions, whose solution sufficiently uses the basic algebra.

Problem

Let a, b, c, d and e be five non-zero complex numbers, and;

$ a + b + c + d + e = -1$ … (i)

$ a^2+b^2+c^2+d^2+e^2=15$ …(ii)

$ \dfrac{1}{a} + \dfrac{1}{b} +\dfrac{1}{c} +\dfrac{1}{d} +\dfrac{1}{e}= -1$ …(iii)

$ \dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{1}{d^2}+\dfrac{1}{e^2}=15$ …(iv)

$ abcde = -1 $ …(v).

Solve and find the values of a, b, c, d and e.

Remark

According to the problems of solution of algebraic equations, we know that, if $ \alpha, \beta, \ldots , \delta, \ldots$ are the roots of an equation, then $ (x-\alpha)(x-\beta) \ldots (x-\delta) \ldots =0$ .

Solution

The algebraic equation with roots (a, b, c, d, e ) is $ (x – a)(x – b)(x – c)(x – d)(x – e)=0$

After multiplying terms to each other, we get the following polynomial:
$ x^5-(a + b + c + d + e) \cdot x^4+(ab+ac+ad+ae+bc+bd+be+cd+ce+de)\cdot x^3-(abc+abd+abe+acd+ace+ade+bcd+bce+bde+cde) \cdot x^2+(abcd+abce+abde+acde+bcde) \cdot x -abcde=0$
… (vi)

Squaring both sides of equation (i), we get

$ a^2+b^2+c^2+d^2+e^2+ 2ab + 2ac + 2ad + 2ae + 2bc + 2bd + 2be + 2cd + 2ce + 2de = 1$
Or,
$ a^2+b^2+c^2+d^2+e^2+ 2(ab + ac + ad + ae + bc + bd + be + cd + ce + de) = 1$ …(vii)

Subtracting equation (ii) from the equation (vii)

$ 2(ab + ac + ad + ae + bc + bd + be + cd + ce + de) = -14$
Or, $ ab+ac+ad+ae+bc+bd+be+cd+ce+de=-7$ …(viii)

Now, multiplying equation (iii) by (v) :: multiplying left side by abcde and right side by -1:: we have

$ bcde + acde + abde + abce + abcd =1$
or, $ abcd+abce+abde+acde+bcde=1$ … (ix)

Again, multiplying equation (iv) by the square of equation (v), we get

$ (bcde)^2 + (acde)^2+ (abde)^2+ (abce)^2+ (abcd)^2= 15$

Or, $ (abcd)^2+ (bcde)^2+ (cdea)^2+ (deab)^2+ (eabc)^2= 15$ … (x)

Squaring $ abcd + bcde +cdea +deab + eabc = 1$ we get

$ (abcd)^2+(bcde)^2+(cdea^2)+(deab)^2+(eabc)^2+2abcde \cdot (abc+abd+abe+acd+ace+ade+bcd+bce+bde+cde)=1$ … (xi)

Substitute known values in (xi):

$ 15 – 2(abc + abd + abe + acd + ace + ade + bcd + bce + bde + cde) = 1$

Or, $ abc+abd+abe+acd+ace+ade+bcd+bce+bde+cde =7$ … (xii)

Putting values from equation, (i), (viii), (xii), (ix) and (v) respectively, to the equation (vi), we obtain the algebraic equation
$ x^5+x^4-7x^3-7x^2+x+1=0$ … (xiii).

Now, Equation (xiii) has the solutions a, b, c, d and e.

Factorizing (xiii) we get:
$ (x + 1)(x^4- 7x^2 + 1) = 0$
$ x = -1 $ or $ x^4- 7x^2+ 1 = 0$
As, $ x^4- 7x^2+ 1 = 0$ has roots:

  1. $ \dfrac{1}{2} (3+\sqrt{5})$
  2. $ \dfrac{1}{2} (3-\sqrt{5})$
  3. $ \dfrac{1}{2} (-3+\sqrt{5})$
  4. $ \dfrac{1}{2} (-3-\sqrt{5})$

Thus, a, b, c, d and e are

  • $ -1$
  • $ \dfrac{1}{2} (3+\sqrt{5})$
  • $ \dfrac{1}{2} (3-\sqrt{5})$
  • $ \dfrac{1}{2} (-3+\sqrt{5})$
  • $ \dfrac{1}{2} (-3-\sqrt{5})$

irrespective of any distinct order due to their symmetry.

You May Also Like
Carleson
Read More

Abel Prize Laureates

Abel prize is one of the most prestigious awards given for outstanding contribution in mathematics, often considered as the…