You might be thinking why am I writing about an individual number? Actually, in previous year annual exams, my registration number was 381654729. Which is just an ‘ordinary’ 9-digit long number. I never cared about it- and forgot it after exam results were announced. But today morning, when I opened “Mathematics Today” magazine’s October 2010, page 8; I was brilliantly shocked. 381654729 is a nine digit number with each of the digits from 1 to 9 appearing once. The whole number is divisible by 9. If you remove the right-most digit, the remaining eight-digit number is divisible by 8. Again removing the next-right-most digit leaves a seven-digit number that is divisible by 7. Similarly, removing next-rightmost digit leaves a six-digit number that is divisible by 6. This property continues all the way down to one digit.

Further research on this number turned out to have a name “Poly-divisible Number.”

Mathematical Wonders happen with Mathematicians. 🙂

Total
0
Shares


Feel free to ask questions, send feedback and even point out mistakes. Great conversations start with just a single word. How to write better comments?
5 comments
Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

You May Also Like
px Gregory XIII
Read More

Calendar Formula: Finding the Week-days

This is the last month of the glorious prime year 2011. We are all set to welcome upcoming 2012, which is not a prime but a leap year. Calendars have very decent stories and since this blog is based on mathematical approach, let we talk about the mathematical aspects of calendars. The international calendar we use is called Gregorian Calendar,…

Getting Started with Measure Theory

Last year, I managed to successfully finish Metric Spaces, Basic Topology and other Analysis topics. Starting from the next semester I’ll be learning more pure mathematical topics, like Functional Analysis, Combinatorics and more. The plan is to lead myself to Combinatorics by majoring Functional Analysis and Topology. But before all those, I’ll be studying measure theory and probability this July – August. Probability…

Everywhere Continuous Non-differentiable Function

Weierstrass had drawn attention to the fact that there exist functions which are continuous for every value of $ x$ but do not possess a derivative for any value. We now consider the celebrated function given by Weierstrass to show this fact. It will be shown that if $ f(x)= \displaystyle{\sum_{n=0}^{\infty} } b^n \cos (a^n \pi x) \ \ldots (1)…
mobile number is prime number
Read More

My mobile number is a prime number

My personal mobile number 9565804301 is a prime number. What is a prime number?$ Any integer p greater than 1 is called a prime number if and only if its positive factors are 1 and the number p itself. In other words, the natural numbers which are completely divisible by 1 and themselves only and have no other factors, are called prime numbers. 2$ ,$ 3$…

How Many Fishes in One Year? [A Puzzle in Making]

This is a puzzle which I told to my classmates during a talk, a few days before. I did not represent it as a puzzle, but a talk suggesting the importance of Math in general life. This is partially solved for me and I hope you will run your brain-horse to help me solve it completely. If you didn’t notice,…

Fermat Numbers

Fermat Number, a class of numbers, is an integer of the form $ F_n=2^{2^n} +1 \ \ n \ge 0$ . For example: Putting $ n := 0,1,2 \ldots$ in $ F_n=2^{2^n}$ we get $ F_0=3$ , $ F_1=5$ , $ F_2=17$ , $ F_3=257$ etc. Fermat observed that all the integers $ F_0, F_1, F_2, F_3, \ldots$ were prime…