Any integer greater than 1 is called a prime number if and only if its positive factors are 1 and the number p itself.

The basic ideology involved in this post is flawed and the post has now been moved to Archives.

– The Editor

mistaken
via xkcd

Prime Generating Formulas

We all know how hard it is to predict a formula for prime numbers! They have extremely uncertain pattern at various number ranges. Some prime numbers may have difference of hundreds, while few others are as close as possible. Mathematicians and computer scientists have worked very well for a long time to discover more prime numbers and tried hard to compute a unique formula. But as there are no certain patterns, it remains difficult to discover exactly the next prime number after a certain prime. There are still some ideas available which help mathematics majors predict patterns in prime numbers.

 

I have already discussed two such (flawed) ideas about prime numbers generation. You can revisit them:

The third idea, originally commented by Huen Yeong Kong,$   forms an accurate sequence of prime numbers. It is very extensive and appears to be true at all my computational limits. The prime factorization of product of all 2i ‘s ($i=1, 2, 3, \ldots $ ), i.e., factor ( $\displaystyle{\prod_{i=1}^n} 2i , n \in \mathbb{Z}^+$ ), gives all consecutive prime numbers in a sequence.

As an example, take $n=1$, we have $\displaystyle{\prod_{i=1}^1} 2i=2$. Therefore, $\text{factor}\prod_{i=1}^1 2i$ =2.

Similarly, for n=2, as $\displaystyle{\prod_{i=1}^2} 2i=8$, we have $\text{factor}\prod_{i=1}^2 2i$= 2.

Again, for n=3, as $\displaystyle{\prod_{i=1}^3} 2i=48$, we have $\text{factor}\prod_{i=1}^3 2i$= 2,3.

On continuing the same for different increasing values of n,  factors containing sequence of consecutive primes: 2, 3, 5, 7, 11, 13, … were obtained. The greatest (final) terms of these sequences were always less than or equal to value of chosen n.

With Maxima for Windows, a calculation beyond n=~14000 isn’t possible for this expression. For n=13000, the prime generating product $\displaystyle{\prod_{i=1}^{13000}} 2i$ was factored by writing

factor(product(2*i,i,1,100000));

in Maxima software, which yielded the following  prime factors of the number $\displaystyle{\prod_{i=1}^{13000}} 2i$:

2^25994, 3^6494, 5^3248, 7^2164, 11^1297, 13^1081, 17^810, 19^721, 23^590, 29^463, 31^432, 37^360, 41^324, 43^309, 47^281, 53^249, 59^223, 61^216, 67^196, 71^185, 73^180, 79^166, 83^157, 89^147, 97^135, 101^129, 103^127, 107^122, 109^120, 113^116, 127^102, 131^99, 137^94, 139^93, 149^87, 151^86, 157^82, 163^79, 167^77, 173^75, 179^72, 181^71, 191^68, 193^67, 197^65, 199^65, 211^61, 223^58, 227^57, 229^56, 233^55, 239^54, 241^53, 251^51, 257^50, 263^49, 269^48, 271^47, 277^46, 281^46, 283^45, 293^44, 307^42, 311^41, 313^41, 317^41, 331^39, 337^38, 347^37, 349^37, 353^36, 359^36, 367^35, 373^34, 379^34, 383^33, 389^33, 397^32, 401^32, 409^31, 419^31, 421^30, 431^30, 433^30, 439^29, 443^29, 449^28, 457^28, 461^28, 463^28, 467^27, 479^27, 487^26, 491^26, 499^26, 503^25, 509^25, 521^24, 523^24, 541^24, 547^23, 557^23, 563^23, 569^22, 571^22, 577^22, 587^22, 593^21, 599^21, 601^21, 607^21, 613^21, 617^21, 619^21, 631^20, 641^20, 643^20, 647^20, 653^19, 659^19, 661^19, 673^19, 677^19, 683^19, 691^18, 701^18, 709^18, 719^18, 727^17, 733^17, 739^17, 743^17, 751^17, 757^17, 761^17, 769^16, 773^16, 787^16, 797^16, 809^16, 811^16, 821^15, 823^15, 827^15, 829^15, 839^15, 853^15, 857^15, 859^15, 863^15, 877^14, 881^14, 883^14, 887^14, 907^14, 911^14, 919^14, 929^13, 937^13, 941^13, 947^13, 953^13, 967^13, 971^13, 977^13, 983^13, 991^13, 997^13, 1009^12, 1013^12, 1019^12, 1021^12, 1031^12, 1033^12, 1039^12, 1049^12, 1051^12, 1061^12, 1063^12, 1069^12, 1087^11, 1091^11, 1093^11, 1097^11, 1103^11, 1109^11, 1117^11, 1123^11, 1129^11, 1151^11, 1153^11, 1163^11, 1171^11, 1181^11, 1187^10, 1193^10, 1201^10, 1213^10, 1217^10, 1223^10, 1229^10, 1231^10, 1237^10, 1249^10, 1259^10, 1277^10, 1279^10, 1283^10, 1289^10, 1291^10, 1297^10, 1301^9, 1303^9, 1307^9, 1319^9, 1321^9, 1327^9, 1361^9, 1367^9, 1373^9, 1381^9, 1399^9, 1409^9, 1423^9, 1427^9, 1429^9, 1433^9, 1439^9, 1447^8, 1451^8, 1453^8, 1459^8, 1471^8, 1481^8, 1483^8, 1487^8, 1489^8, 1493^8, 1499^8, 1511^8, 1523^8, 1531^8, 1543^8, 1549^8, 1553^8, 1559^8, 1567^8, 1571^8, 1579^8, 1583^8, 1597^8, 1601^8, 1607^8, 1609^8, 1613^8, 1619^8, 1621^8, 1627^7, 1637^7, 1657^7, 1663^7, 1667^7, 1669^7, 1693^7, 1697^7, 1699^7, 1709^7, 1721^7, 1723^7, 1733^7, 1741^7, 1747^7, 1753^7, 1759^7, 1777^7, 1783^7, 1787^7, 1789^7, 1801^7, 1811^7, 1823^7, 1831^7, 1847^7, 1861^6, 1867^6, 1871^6, 1873^6, 1877^6, 1879^6, 1889^6, 1901^6, 1907^6, 1913^6, 1931^6, 1933^6, 1949^6, 1951^6, 1973^6, 1979^6, 1987^6, 1993^6, 1997^6, 1999^6, 2003^6, 2011^6, 2017^6, 2027^6, 2029^6, 2039^6, 2053^6, 2063^6, 2069^6, 2081^6, 2083^6, 2087^6, 2089^6, 2099^6, 2111^6, 2113^6, 2129^6, 2131^6, 2137^6, 2141^6, 2143^6, 2153^6, 2161^6, 2179^5, 2203^5, 2207^5, 2213^5, 2221^5, 2237^5, 2239^5, 2243^5, 2251^5, 2267^5, 2269^5, 2273^5, 2281^5, 2287^5, 2293^5, 2297^5, 2309^5, 2311^5, 2333^5, 2339^5, 2341^5, 2347^5, 2351^5, 2357^5, 2371^5, 2377^5, 2381^5, 2383^5, 2389^5, 2393^5, 2399^5, 2411^5, 2417^5, 2423^5, 2437^5, 2441^5, 2447^5, 2459^5, 2467^5, 2473^5, 2477^5, 2503^5, 2521^5, 2531^5, 2539^5, 2543^5, 2549^5, 2551^5, 2557^5, 2579^5, 2591^5, 2593^5, 2609^4, 2617^4, 2621^4, 2633^4, 2647^4, 2657^4, 2659^4, 2663^4, 2671^4, 2677^4, 2683^4, 2687^4, 2689^4, 2693^4, 2699^4, 2707^4, 2711^4, 2713^4, 2719^4, 2729^4, 2731^4, 2741^4, 2749^4, 2753^4, 2767^4, 2777^4, 2789^4, 2791^4, 2797^4, 2801^4, 2803^4, 2819^4, 2833^4, 2837^4, 2843^4, 2851^4, 2857^4, 2861^4, 2879^4, 2887^4, 2897^4, 2903^4, 2909^4, 2917^4, 2927^4, 2939^4, 2953^4, 2957^4, 2963^4, 2969^4, 2971^4, 2999^4, 3001^4, 3011^4, 3019^4, 3023^4, 3037^4, 3041^4, 3049^4, 3061^4, 3067^4, 3079^4, 3083^4, 3089^4, 3109^4, 3119^4, 3121^4, 3137^4, 3163^4, 3167^4, 3169^4, 3181^4, 3187^4, 3191^4, 3203^4, 3209^4, 3217^4, 3221^4, 3229^4, 3251^3, 3253^3, 3257^3, 3259^3, 3271^3, 3299^3, 3301^3, 3307^3, 3313^3, 3319^3, 3323^3, 3329^3, 3331^3, 3343^3, 3347^3, 3359^3, 3361^3, 3371^3, 3373^3, 3389^3, 3391^3, 3407^3, 3413^3, 3433^3, 3449^3, 3457^3, 3461^3, 3463^3, 3467^3, 3469^3, 3491^3, 3499^3, 3511^3, 3517^3, 3527^3, 3529^3, 3533^3, 3539^3, 3541^3, 3547^3, 3557^3, 3559^3, 3571^3, 3581^3, 3583^3, 3593^3, 3607^3, 3613^3, 3617^3, 3623^3, 3631^3, 3637^3, 3643^3, 3659^3, 3671^3, 3673^3, 3677^3, 3691^3, 3697^3, 3701^3, 3709^3, 3719^3, 3727^3, 3733^3, 3739^3, 3761^3, 3767^3, 3769^3, 3779^3, 3793^3, 3797^3, 3803^3, 3821^3, 3823^3, 3833^3, 3847^3, 3851^3, 3853^3, 3863^3, 3877^3, 3881^3, 3889^3, 3907^3, 3911^3, 3917^3, 3919^3, 3923^3, 3929^3, 3931^3, 3943^3, 3947^3, 3967^3, 3989^3, 4001^3, 4003^3, 4007^3, 4013^3, 4019^3, 4021^3, 4027^3, 4049^3, 4051^3, 4057^3, 4073^3, 4079^3, 4091^3, 4093^3, 4099^3, 4111^3, 4127^3, 4129^3, 4133^3, 4139^3, 4153^3, 4157^3, 4159^3, 4177^3, 4201^3, 4211^3, 4217^3, 4219^3, 4229^3, 4231^3, 4241^3, 4243^3, 4253^3, 4259^3, 4261^3, 4271^3, 4273^3, 4283^3, 4289^3, 4297^3, 4327^3, 4337^2, 4339^2, 4349^2, 4357^2, 4363^2, 4373^2, 4391^2, 4397^2, 4409^2, 4421^2, 4423^2, 4441^2, 4447^2, 4451^2, 4457^2, 4463^2, 4481^2, 4483^2, 4493^2, 4507^2, 4513^2, 4517^2, 4519^2, 4523^2, 4547^2, 4549^2, 4561^2, 4567^2, 4583^2, 4591^2, 4597^2, 4603^2, 4621^2, 4637^2, 4639^2, 4643^2, 4649^2, 4651^2, 4657^2, 4663^2, 4673^2, 4679^2, 4691^2, 4703^2, 4721^2, 4723^2, 4729^2, 4733^2, 4751^2, 4759^2, 4783^2, 4787^2, 4789^2, 4793^2, 4799^2, 4801^2, 4813^2, 4817^2, 4831^2, 4861^2, 4871^2, 4877^2, 4889^2, 4903^2, 4909^2, 4919^2, 4931^2, 4933^2, 4937^2, 4943^2, 4951^2, 4957^2, 4967^2, 4969^2, 4973^2, 4987^2, 4993^2, 4999^2, 5003^2, 5009^2, 5011^2, 5021^2, 5023^2, 5039^2, 5051^2, 5059^2, 5077^2, 5081^2, 5087^2, 5099^2, 5101^2, 5107^2, 5113^2, 5119^2, 5147^2, 5153^2, 5167^2, 5171^2, 5179^2, 5189^2, 5197^2, 5209^2, 5227^2, 5231^2, 5233^2, 5237^2, 5261^2, 5273^2, 5279^2, 5281^2, 5297^2, 5303^2, 5309^2, 5323^2, 5333^2, 5347^2, 5351^2, 5381^2, 5387^2, 5393^2, 5399^2, 5407^2, 5413^2, 5417^2, 5419^2, 5431^2, 5437^2, 5441^2, 5443^2, 5449^2, 5471^2, 5477^2, 5479^2, 5483^2, 5501^2, 5503^2, 5507^2, 5519^2, 5521^2, 5527^2, 5531^2, 5557^2, 5563^2, 5569^2, 5573^2, 5581^2, 5591^2, 5623^2, 5639^2, 5641^2, 5647^2, 5651^2, 5653^2, 5657^2, 5659^2, 5669^2, 5683^2, 5689^2, 5693^2, 5701^2, 5711^2, 5717^2, 5737^2, 5741^2, 5743^2, 5749^2, 5779^2, 5783^2, 5791^2, 5801^2, 5807^2, 5813^2, 5821^2, 5827^2, 5839^2, 5843^2, 5849^2, 5851^2, 5857^2, 5861^2, 5867^2, 5869^2, 5879^2, 5881^2, 5897^2, 5903^2, 5923^2, 5927^2, 5939^2, 5953^2, 5981^2, 5987^2, 6007^2, 6011^2, 6029^2, 6037^2, 6043^2, 6047^2, 6053^2, 6067^2, 6073^2, 6079^2, 6089^2, 6091^2, 6101^2, 6113^2, 6121^2, 6131^2, 6133^2, 6143^2, 6151^2, 6163^2, 6173^2, 6197^2, 6199^2, 6203^2, 6211^2, 6217^2, 6221^2, 6229^2, 6247^2, 6257^2, 6263^2, 6269^2, 6271^2, 6277^2, 6287^2, 6299^2, 6301^2, 6311^2, 6317^2, 6323^2, 6329^2, 6337^2, 6343^2, 6353^2, 6359^2, 6361^2, 6367^2, 6373^2, 6379^2, 6389^2, 6397^2, 6421^2, 6427^2, 6449^2, 6451^2, 6469^2, 6473^2, 6481^2, 6491^2, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973, 10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, 10103, 10111, 10133, 10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193, 10211, 10223, 10243, 10247, 10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303, 10313, 10321, 10331, 10333, 10337, 10343, 10357, 10369, 10391, 10399, 10427, 10429, 10433, 10453, 10457, 10459, 10463, 10477, 10487, 10499, 10501, 10513, 10529, 10531, 10559, 10567, 10589, 10597, 10601, 10607, 10613, 10627, 10631, 10639, 10651, 10657, 10663, 10667, 10687, 10691, 10709, 10711, 10723, 10729, 10733, 10739, 10753, 10771, 10781, 10789, 10799, 10831, 10837, 10847, 10853, 10859, 10861, 10867, 10883, 10889, 10891, 10903, 10909, 10937, 10939, 10949, 10957, 10973, 10979, 10987, 10993, 11003, 11027, 11047, 11057, 11059, 11069, 11071, 11083, 11087, 11093, 11113, 11117, 11119, 11131, 11149, 11159, 11161, 11171, 11173, 11177, 11197, 11213, 11239, 11243, 11251, 11257, 11261, 11273, 11279, 11287, 11299, 11311, 11317, 11321, 11329, 11351, 11353, 11369, 11383, 11393, 11399, 11411, 11423, 11437, 11443, 11447, 11467, 11471, 11483, 11489, 11491, 11497, 11503, 11519, 11527, 11549, 11551, 11579, 11587, 11593, 11597, 11617, 11621, 11633, 11657, 11677, 11681, 11689, 11699, 11701, 11717, 11719, 11731, 11743, 11777, 11779, 11783, 11789, 11801, 11807, 11813, 11821, 11827, 11831, 11833, 11839, 11863, 11867, 11887, 11897, 11903, 11909, 11923, 11927, 11933, 11939, 11941, 11953, 11959, 11969, 11971, 11981, 11987, 12007, 12011, 12037, 12041, 12043, 12049, 12071, 12073, 12097, 12101, 12107, 12109, 12113, 12119, 12143, 12149, 12157, 12161, 12163, 12197, 12203, 12211, 12227, 12239, 12241, 12251, 12253, 12263, 12269, 12277, 12281, 12289, 12301, 12323, 12329, 12343, 12347, 12373, 12377, 12379, 12391, 12401, 12409, 12413, 12421, 12433, 12437, 12451, 12457, 12473, 12479, 12487, 12491, 12497, 12503, 12511, 12517, 12527, 12539, 12541, 12547, 12553, 12569, 12577, 12583, 12589, 12601, 12611, 12613, 12619, 12637, 12641, 12647, 12653, 12659, 12671, 12689, 12697, 12703, 12713, 12721, 12739, 12743, 12757, 12763, 12781, 12791, 12799, 12809, 12821, 12823, 12829, 12841, 12853, 12889, 12893, 12899, 12907, 12911, 12917, 12919, 12923, 12941, 12953, 12959, 12967, 12973, 12979, 12983.

 

Above sequence contains each and every prime from 1 to 12985. This prime generating product may fail to produce such sequences at higher limits but still it is way better than Euler’s prime generating polynomial.

Any comments?

 

Total
0
Shares


Feel free to ask questions, send feedback and even point out mistakes. Great conversations start with just a single word. How to write better comments?
2 comments
  1. Factorization of 1*2*3*4*5*6*7*8*9*10*…*n also yields every prime number in that interval. You put prime numbers in a product and they’re really in there, how fascinating!

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

You May Also Like

Claim for a Prime Number Formula

Dr. SMRH Moosavi has claimed that he had derived a general formula for finding the $ n$ -th prime number. More details can be found here at PrimeNumbersFormula.com and a brief discussion here at Math.SE titled  “Formula for the nth prime number: discovered?” SOME MORE EXCERPTS ARE HERE:
Read More

8 ways to manually and automatically backup MySQL database

MySQL is a popular open source database management system that I used in the development of interactive websites. For every information to store in MySQL database, you want to ensure it is safely backed up for future retrieval, not forgetting, maintaining data security. Several methods are available that different businesses adapt to backup their data. However, for the backup process,…

Largest Prime Numbers

What is a Prime Number? An integer, say $ p $ , [ $ \ne {0} $ & $ \ne { \pm{1}} $ ] is said to be a prime integer iff its only factors (or divisors) are $ \pm{1} $ & $ \pm{p} $ . As? Few easy examples are: $ \pm{2}, \pm{3}, \pm{5}, \pm{7}, \pm{11}, \pm{13} $ …….etc.…
Unlocked Lock
Read More

New Math Series: Selected Topics in Functional Analysis

This series of study notes is aimed for post-graduate (M.A/M.Sc.) students of Indian & international universities. The study of functional analysis can be started after basic topology and set theory courses. In this introductory article we will start with some elementary yet important definitions and notations from analysis. We will finish this article with the definition of Norm & Normed…

Euler’s (Prime to) Prime Generating Equation

The greatest number theorist in mathematical universe, Leonhard Euler had discovered some formulas and relations in number theory, which were based on practices and were correct to limited extent but still stun the mathematicians. The prime generating equation by Euler is a very specific binomial equation on prime numbers and yields more primes than any other relations out there in…

Fermat Numbers

Fermat Number, a class of numbers, is an integer of the form $ F_n=2^{2^n} +1 \ \ n \ge 0$ . For example: Putting $ n := 0,1,2 \ldots$ in $ F_n=2^{2^n}$ we get $ F_0=3$ , $ F_1=5$ , $ F_2=17$ , $ F_3=257$ etc. Fermat observed that all the integers $ F_0, F_1, F_2, F_3, \ldots$ were prime…