Any integer greater than 1 is called a prime number if and only if its positive factors are 1 and the number p itself.

The basic ideology involved in this post is flawed and the post has now been moved to Archives.

– The Editor

mistaken
via xkcd

Prime Generating Formulas

We all know how hard it is to predict a formula for prime numbers! They have extremely uncertain pattern at various number ranges. Some prime numbers may have difference of hundreds, while few others are as close as possible. Mathematicians and computer scientists have worked very well for a long time to discover more prime numbers and tried hard to compute a unique formula. But as there are no certain patterns, it remains difficult to discover exactly the next prime number after a certain prime. There are still some ideas available which help mathematics majors predict patterns in prime numbers.

 

I have already discussed two such (flawed) ideas about prime numbers generation. You can revisit them:

The third idea, originally commented by Huen Yeong Kong,$   forms an accurate sequence of prime numbers. It is very extensive and appears to be true at all my computational limits. The prime factorization of product of all 2i ‘s ($i=1, 2, 3, \ldots $ ), i.e., factor ( $\displaystyle{\prod_{i=1}^n} 2i , n \in \mathbb{Z}^+$ ), gives all consecutive prime numbers in a sequence.

As an example, take $n=1$, we have $\displaystyle{\prod_{i=1}^1} 2i=2$. Therefore, $\text{factor}\prod_{i=1}^1 2i$ =2.

Similarly, for n=2, as $\displaystyle{\prod_{i=1}^2} 2i=8$, we have $\text{factor}\prod_{i=1}^2 2i$= 2.

Again, for n=3, as $\displaystyle{\prod_{i=1}^3} 2i=48$, we have $\text{factor}\prod_{i=1}^3 2i$= 2,3.

On continuing the same for different increasing values of n,  factors containing sequence of consecutive primes: 2, 3, 5, 7, 11, 13, … were obtained. The greatest (final) terms of these sequences were always less than or equal to value of chosen n.

With Maxima for Windows, a calculation beyond n=~14000 isn’t possible for this expression. For n=13000, the prime generating product $\displaystyle{\prod_{i=1}^{13000}} 2i$ was factored by writing

factor(product(2*i,i,1,100000));

in Maxima software, which yielded the following  prime factors of the number $\displaystyle{\prod_{i=1}^{13000}} 2i$:

2^25994, 3^6494, 5^3248, 7^2164, 11^1297, 13^1081, 17^810, 19^721, 23^590, 29^463, 31^432, 37^360, 41^324, 43^309, 47^281, 53^249, 59^223, 61^216, 67^196, 71^185, 73^180, 79^166, 83^157, 89^147, 97^135, 101^129, 103^127, 107^122, 109^120, 113^116, 127^102, 131^99, 137^94, 139^93, 149^87, 151^86, 157^82, 163^79, 167^77, 173^75, 179^72, 181^71, 191^68, 193^67, 197^65, 199^65, 211^61, 223^58, 227^57, 229^56, 233^55, 239^54, 241^53, 251^51, 257^50, 263^49, 269^48, 271^47, 277^46, 281^46, 283^45, 293^44, 307^42, 311^41, 313^41, 317^41, 331^39, 337^38, 347^37, 349^37, 353^36, 359^36, 367^35, 373^34, 379^34, 383^33, 389^33, 397^32, 401^32, 409^31, 419^31, 421^30, 431^30, 433^30, 439^29, 443^29, 449^28, 457^28, 461^28, 463^28, 467^27, 479^27, 487^26, 491^26, 499^26, 503^25, 509^25, 521^24, 523^24, 541^24, 547^23, 557^23, 563^23, 569^22, 571^22, 577^22, 587^22, 593^21, 599^21, 601^21, 607^21, 613^21, 617^21, 619^21, 631^20, 641^20, 643^20, 647^20, 653^19, 659^19, 661^19, 673^19, 677^19, 683^19, 691^18, 701^18, 709^18, 719^18, 727^17, 733^17, 739^17, 743^17, 751^17, 757^17, 761^17, 769^16, 773^16, 787^16, 797^16, 809^16, 811^16, 821^15, 823^15, 827^15, 829^15, 839^15, 853^15, 857^15, 859^15, 863^15, 877^14, 881^14, 883^14, 887^14, 907^14, 911^14, 919^14, 929^13, 937^13, 941^13, 947^13, 953^13, 967^13, 971^13, 977^13, 983^13, 991^13, 997^13, 1009^12, 1013^12, 1019^12, 1021^12, 1031^12, 1033^12, 1039^12, 1049^12, 1051^12, 1061^12, 1063^12, 1069^12, 1087^11, 1091^11, 1093^11, 1097^11, 1103^11, 1109^11, 1117^11, 1123^11, 1129^11, 1151^11, 1153^11, 1163^11, 1171^11, 1181^11, 1187^10, 1193^10, 1201^10, 1213^10, 1217^10, 1223^10, 1229^10, 1231^10, 1237^10, 1249^10, 1259^10, 1277^10, 1279^10, 1283^10, 1289^10, 1291^10, 1297^10, 1301^9, 1303^9, 1307^9, 1319^9, 1321^9, 1327^9, 1361^9, 1367^9, 1373^9, 1381^9, 1399^9, 1409^9, 1423^9, 1427^9, 1429^9, 1433^9, 1439^9, 1447^8, 1451^8, 1453^8, 1459^8, 1471^8, 1481^8, 1483^8, 1487^8, 1489^8, 1493^8, 1499^8, 1511^8, 1523^8, 1531^8, 1543^8, 1549^8, 1553^8, 1559^8, 1567^8, 1571^8, 1579^8, 1583^8, 1597^8, 1601^8, 1607^8, 1609^8, 1613^8, 1619^8, 1621^8, 1627^7, 1637^7, 1657^7, 1663^7, 1667^7, 1669^7, 1693^7, 1697^7, 1699^7, 1709^7, 1721^7, 1723^7, 1733^7, 1741^7, 1747^7, 1753^7, 1759^7, 1777^7, 1783^7, 1787^7, 1789^7, 1801^7, 1811^7, 1823^7, 1831^7, 1847^7, 1861^6, 1867^6, 1871^6, 1873^6, 1877^6, 1879^6, 1889^6, 1901^6, 1907^6, 1913^6, 1931^6, 1933^6, 1949^6, 1951^6, 1973^6, 1979^6, 1987^6, 1993^6, 1997^6, 1999^6, 2003^6, 2011^6, 2017^6, 2027^6, 2029^6, 2039^6, 2053^6, 2063^6, 2069^6, 2081^6, 2083^6, 2087^6, 2089^6, 2099^6, 2111^6, 2113^6, 2129^6, 2131^6, 2137^6, 2141^6, 2143^6, 2153^6, 2161^6, 2179^5, 2203^5, 2207^5, 2213^5, 2221^5, 2237^5, 2239^5, 2243^5, 2251^5, 2267^5, 2269^5, 2273^5, 2281^5, 2287^5, 2293^5, 2297^5, 2309^5, 2311^5, 2333^5, 2339^5, 2341^5, 2347^5, 2351^5, 2357^5, 2371^5, 2377^5, 2381^5, 2383^5, 2389^5, 2393^5, 2399^5, 2411^5, 2417^5, 2423^5, 2437^5, 2441^5, 2447^5, 2459^5, 2467^5, 2473^5, 2477^5, 2503^5, 2521^5, 2531^5, 2539^5, 2543^5, 2549^5, 2551^5, 2557^5, 2579^5, 2591^5, 2593^5, 2609^4, 2617^4, 2621^4, 2633^4, 2647^4, 2657^4, 2659^4, 2663^4, 2671^4, 2677^4, 2683^4, 2687^4, 2689^4, 2693^4, 2699^4, 2707^4, 2711^4, 2713^4, 2719^4, 2729^4, 2731^4, 2741^4, 2749^4, 2753^4, 2767^4, 2777^4, 2789^4, 2791^4, 2797^4, 2801^4, 2803^4, 2819^4, 2833^4, 2837^4, 2843^4, 2851^4, 2857^4, 2861^4, 2879^4, 2887^4, 2897^4, 2903^4, 2909^4, 2917^4, 2927^4, 2939^4, 2953^4, 2957^4, 2963^4, 2969^4, 2971^4, 2999^4, 3001^4, 3011^4, 3019^4, 3023^4, 3037^4, 3041^4, 3049^4, 3061^4, 3067^4, 3079^4, 3083^4, 3089^4, 3109^4, 3119^4, 3121^4, 3137^4, 3163^4, 3167^4, 3169^4, 3181^4, 3187^4, 3191^4, 3203^4, 3209^4, 3217^4, 3221^4, 3229^4, 3251^3, 3253^3, 3257^3, 3259^3, 3271^3, 3299^3, 3301^3, 3307^3, 3313^3, 3319^3, 3323^3, 3329^3, 3331^3, 3343^3, 3347^3, 3359^3, 3361^3, 3371^3, 3373^3, 3389^3, 3391^3, 3407^3, 3413^3, 3433^3, 3449^3, 3457^3, 3461^3, 3463^3, 3467^3, 3469^3, 3491^3, 3499^3, 3511^3, 3517^3, 3527^3, 3529^3, 3533^3, 3539^3, 3541^3, 3547^3, 3557^3, 3559^3, 3571^3, 3581^3, 3583^3, 3593^3, 3607^3, 3613^3, 3617^3, 3623^3, 3631^3, 3637^3, 3643^3, 3659^3, 3671^3, 3673^3, 3677^3, 3691^3, 3697^3, 3701^3, 3709^3, 3719^3, 3727^3, 3733^3, 3739^3, 3761^3, 3767^3, 3769^3, 3779^3, 3793^3, 3797^3, 3803^3, 3821^3, 3823^3, 3833^3, 3847^3, 3851^3, 3853^3, 3863^3, 3877^3, 3881^3, 3889^3, 3907^3, 3911^3, 3917^3, 3919^3, 3923^3, 3929^3, 3931^3, 3943^3, 3947^3, 3967^3, 3989^3, 4001^3, 4003^3, 4007^3, 4013^3, 4019^3, 4021^3, 4027^3, 4049^3, 4051^3, 4057^3, 4073^3, 4079^3, 4091^3, 4093^3, 4099^3, 4111^3, 4127^3, 4129^3, 4133^3, 4139^3, 4153^3, 4157^3, 4159^3, 4177^3, 4201^3, 4211^3, 4217^3, 4219^3, 4229^3, 4231^3, 4241^3, 4243^3, 4253^3, 4259^3, 4261^3, 4271^3, 4273^3, 4283^3, 4289^3, 4297^3, 4327^3, 4337^2, 4339^2, 4349^2, 4357^2, 4363^2, 4373^2, 4391^2, 4397^2, 4409^2, 4421^2, 4423^2, 4441^2, 4447^2, 4451^2, 4457^2, 4463^2, 4481^2, 4483^2, 4493^2, 4507^2, 4513^2, 4517^2, 4519^2, 4523^2, 4547^2, 4549^2, 4561^2, 4567^2, 4583^2, 4591^2, 4597^2, 4603^2, 4621^2, 4637^2, 4639^2, 4643^2, 4649^2, 4651^2, 4657^2, 4663^2, 4673^2, 4679^2, 4691^2, 4703^2, 4721^2, 4723^2, 4729^2, 4733^2, 4751^2, 4759^2, 4783^2, 4787^2, 4789^2, 4793^2, 4799^2, 4801^2, 4813^2, 4817^2, 4831^2, 4861^2, 4871^2, 4877^2, 4889^2, 4903^2, 4909^2, 4919^2, 4931^2, 4933^2, 4937^2, 4943^2, 4951^2, 4957^2, 4967^2, 4969^2, 4973^2, 4987^2, 4993^2, 4999^2, 5003^2, 5009^2, 5011^2, 5021^2, 5023^2, 5039^2, 5051^2, 5059^2, 5077^2, 5081^2, 5087^2, 5099^2, 5101^2, 5107^2, 5113^2, 5119^2, 5147^2, 5153^2, 5167^2, 5171^2, 5179^2, 5189^2, 5197^2, 5209^2, 5227^2, 5231^2, 5233^2, 5237^2, 5261^2, 5273^2, 5279^2, 5281^2, 5297^2, 5303^2, 5309^2, 5323^2, 5333^2, 5347^2, 5351^2, 5381^2, 5387^2, 5393^2, 5399^2, 5407^2, 5413^2, 5417^2, 5419^2, 5431^2, 5437^2, 5441^2, 5443^2, 5449^2, 5471^2, 5477^2, 5479^2, 5483^2, 5501^2, 5503^2, 5507^2, 5519^2, 5521^2, 5527^2, 5531^2, 5557^2, 5563^2, 5569^2, 5573^2, 5581^2, 5591^2, 5623^2, 5639^2, 5641^2, 5647^2, 5651^2, 5653^2, 5657^2, 5659^2, 5669^2, 5683^2, 5689^2, 5693^2, 5701^2, 5711^2, 5717^2, 5737^2, 5741^2, 5743^2, 5749^2, 5779^2, 5783^2, 5791^2, 5801^2, 5807^2, 5813^2, 5821^2, 5827^2, 5839^2, 5843^2, 5849^2, 5851^2, 5857^2, 5861^2, 5867^2, 5869^2, 5879^2, 5881^2, 5897^2, 5903^2, 5923^2, 5927^2, 5939^2, 5953^2, 5981^2, 5987^2, 6007^2, 6011^2, 6029^2, 6037^2, 6043^2, 6047^2, 6053^2, 6067^2, 6073^2, 6079^2, 6089^2, 6091^2, 6101^2, 6113^2, 6121^2, 6131^2, 6133^2, 6143^2, 6151^2, 6163^2, 6173^2, 6197^2, 6199^2, 6203^2, 6211^2, 6217^2, 6221^2, 6229^2, 6247^2, 6257^2, 6263^2, 6269^2, 6271^2, 6277^2, 6287^2, 6299^2, 6301^2, 6311^2, 6317^2, 6323^2, 6329^2, 6337^2, 6343^2, 6353^2, 6359^2, 6361^2, 6367^2, 6373^2, 6379^2, 6389^2, 6397^2, 6421^2, 6427^2, 6449^2, 6451^2, 6469^2, 6473^2, 6481^2, 6491^2, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973, 10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, 10103, 10111, 10133, 10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193, 10211, 10223, 10243, 10247, 10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303, 10313, 10321, 10331, 10333, 10337, 10343, 10357, 10369, 10391, 10399, 10427, 10429, 10433, 10453, 10457, 10459, 10463, 10477, 10487, 10499, 10501, 10513, 10529, 10531, 10559, 10567, 10589, 10597, 10601, 10607, 10613, 10627, 10631, 10639, 10651, 10657, 10663, 10667, 10687, 10691, 10709, 10711, 10723, 10729, 10733, 10739, 10753, 10771, 10781, 10789, 10799, 10831, 10837, 10847, 10853, 10859, 10861, 10867, 10883, 10889, 10891, 10903, 10909, 10937, 10939, 10949, 10957, 10973, 10979, 10987, 10993, 11003, 11027, 11047, 11057, 11059, 11069, 11071, 11083, 11087, 11093, 11113, 11117, 11119, 11131, 11149, 11159, 11161, 11171, 11173, 11177, 11197, 11213, 11239, 11243, 11251, 11257, 11261, 11273, 11279, 11287, 11299, 11311, 11317, 11321, 11329, 11351, 11353, 11369, 11383, 11393, 11399, 11411, 11423, 11437, 11443, 11447, 11467, 11471, 11483, 11489, 11491, 11497, 11503, 11519, 11527, 11549, 11551, 11579, 11587, 11593, 11597, 11617, 11621, 11633, 11657, 11677, 11681, 11689, 11699, 11701, 11717, 11719, 11731, 11743, 11777, 11779, 11783, 11789, 11801, 11807, 11813, 11821, 11827, 11831, 11833, 11839, 11863, 11867, 11887, 11897, 11903, 11909, 11923, 11927, 11933, 11939, 11941, 11953, 11959, 11969, 11971, 11981, 11987, 12007, 12011, 12037, 12041, 12043, 12049, 12071, 12073, 12097, 12101, 12107, 12109, 12113, 12119, 12143, 12149, 12157, 12161, 12163, 12197, 12203, 12211, 12227, 12239, 12241, 12251, 12253, 12263, 12269, 12277, 12281, 12289, 12301, 12323, 12329, 12343, 12347, 12373, 12377, 12379, 12391, 12401, 12409, 12413, 12421, 12433, 12437, 12451, 12457, 12473, 12479, 12487, 12491, 12497, 12503, 12511, 12517, 12527, 12539, 12541, 12547, 12553, 12569, 12577, 12583, 12589, 12601, 12611, 12613, 12619, 12637, 12641, 12647, 12653, 12659, 12671, 12689, 12697, 12703, 12713, 12721, 12739, 12743, 12757, 12763, 12781, 12791, 12799, 12809, 12821, 12823, 12829, 12841, 12853, 12889, 12893, 12899, 12907, 12911, 12917, 12919, 12923, 12941, 12953, 12959, 12967, 12973, 12979, 12983.

 

Above sequence contains each and every prime from 1 to 12985. This prime generating product may fail to produce such sequences at higher limits but still it is way better than Euler’s prime generating polynomial.

Any comments?

 

2 comments
  1. Factorization of 1*2*3*4*5*6*7*8*9*10*…*n also yields every prime number in that interval. You put prime numbers in a product and they’re really in there, how fascinating!

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

You May Also Like

Milnor wins 2011 Abel Prize

The Norwegian Academy of Science and Letters has decided to award the Abel Prize for 2011 to John Milnor, Institute for Mathematical Sciences, Stony Brook University, New York “for pioneering discoveries in topology, geometry and algebra”. The President of the Norwegian Academy of Science and Letters, Øyvind Østerud, announced the winner of this year’s Abel Prize at the Academy in…

Euler’s (Prime to) Prime Generating Equation

The greatest number theorist in mathematical universe, Leonhard Euler had discovered some formulas and relations in number theory, which were based on practices and were correct to limited extent but still stun the mathematicians. The prime generating equation by Euler is a very specific binomial equation on prime numbers and yields more primes than any other relations out there in…

Fox – Rabbit Chase Problems

Part I: A fox chases a rabbit. Both run at the same speed $ v$ . At all times, the fox runs directly toward the instantaneous position of the rabbit , and the rabbit runs at an angle $ \alpha $ relative to the direction directly away from the fox. The initial separation between the fox and the rabbit is…

Solving Integral Equations – (1) Definitions and Types

If you have finished your course in Calculus and Differential Equations, you should head to your next milestone: the Integral Equations. This marathon series (planned to be of 6 or 8 parts) is dedicated to interactive learning of integral equations for the beginners —starting with just definitions and demos —and the pros— taking it to the heights of problem solving.…

How Genius You Are?

Let have a Test: You need to make a calculation. Please do neither use a calculator nor a paper. Calculate everything “in your brain”. Take 1000 and add 40. Now, add another 1000. Now add 30. Now, add 1000 again. Add 20. And add 1000 again. And an additional 10.   So, You Got The RESULT!  Quicker you see the…

Test your counting skills with Branifyd game for Android

Without basic operations of counting, like Addition, Subtraction, Multiplication and Division, it is not possible to imagine math problems. Counting is the base of human life. A student, whether he’s a math major or not, must be good at counting numbers.  The counting ability builds from experience and is definitely a time taking process.   Larger you have given time…