Ramanujan (1887-1920) discovered some formulas on algebraic nested radicals. This article is based on one of those formulas. The main aim of this article is to discuss and derive them intuitively. Nested radicals have many applications in Number Theory as well as in Numerical Methods .
The simple binomial theorem of degree 2 can be written as:
$ {(x+a)}^2=x^2+2xa+a^2 \ \ldots (1)$
Replacing $ a$ by $ (n+a)$ where $ x, n, a \in \mathbb{R}$ , we can have
$ {(x+(n+a))}^2= x^2+2x(n+a)+{(n+a)}^2$
or, $ {(x+n+a)}^2 =x^2+2xn+2ax+{(n+a)}^2$
Arranging terms in a way that
$ {(x+n+a)}^2 =ax+{(n+a)}^2+x^2+2xn+ax=ax+{(n+a)}^2+x(x+2n+a)$
Taking Square-root of both sides
or,
$$ x+n+a=\sqrt{ax+{(n+a)}^2+x(x+2n+a)} \ \ldots (2)$$
Take a break. And now think about $ (x+2n+a)$ in the same way, as:
$ x+2n+a =(x+n)+n+a$ .
Therefore, in equation (2), if we replace $ x$ by $ x+n$ , we get
$ x+2n+a=(x+n)+n+a=\sqrt{a(x+n)+{(n+a)}^2+(x+n)((x+n)+2n+a)}$
or, $ x+2n+a=\sqrt{a(x+n)+{(n+a)}^2+(x+n)(x+3n+a)} \ \ldots (3)$
Similarly, $ x+3n+a=\sqrt{a(x+2n)+{(n+a)}^2+(x+2n)(x+4n+a)} \ \ldots (4)$
and also, $ x+4n+a=\sqrt{a(x+3n)+{(n+a)}^2+(x+3n)(x+5n+a)} \ \ldots (5)$
Similarly,
$ x+kn+a=\sqrt{a(x+(k-1)n)+{(n+a)}^2+(x+(k-1)n)(x+(k+1)n+a)} \ \ldots (6)$ where, $ k \in \mathbb{N}$ .Putting the value of $ x+2n+a$ from equation (3) in equation (2), we get:
$ x+n+a=\sqrt{ax+{(n+a)}^2+x\sqrt{a(x+n)+{(n+a)}^2+(x+n)(x+3n+a)}} \ \ldots (7)$
Again, putting the value of $ x+3n+a$ from equation (4) in equation (7), we get
$ x+n+a =\sqrt{ax+{(n+a)}^2+x\sqrt{a(x+n)+{(n+a)}^2+(x+n)\sqrt{a(x+2n)+{(n+a)}^2+(x+2n)(x+4n+a)}}} \ \ldots (8)$
Generalizing the result for $ k$ -nested radicals:
$$ x+n+a =\\ \sqrt{ax+{(n+a)}^2+x\sqrt{a(x+n)+{(n+a)}^2+ \\ (x+n)\sqrt{a(x+2n)+{(n+a)}^2+(x+2n)\sqrt{\ldots +(x+(k-2)n)\sqrt{a(x+(k-1)n)+ \\ {(n+a)}^2+x(x+(k+1)n+a)}}}}} \ \ldots (9)$$
This is the general formula of Ramanujan Nested Radicals up-to $ k$ roots.

Some interesting points

As $ x,n$ and $ a$ all are real numbers, thus they can be interchanged with each other.
i.e.,

$$ x+n+a = \\ \sqrt{ax+{(n+a)}^2+x\sqrt{a(x+n)+{(n+a)}^2+(x+n)\sqrt{a(x+2n)+{(n+a)}^2+(x+2n)\sqrt{\ldots+(x+(k-2)n)\\ \sqrt{a(x+(k-1)n)+{(n+a)}^2+x(x+(k+1)n+a)}}}}}) \\=\sqrt{an+{(x+a)}^2+n\sqrt{a(n+x)+{(x+a)}^2+(n+x)\sqrt{a(n+2x)+{(x+a)}^2+(n+2x)\sqrt{\ldots+(n+(k-2)x) \\ \sqrt{a(n+(k-1)x)+{(x+a)}^2+n(n+(k+1)x+a)}}}}}) \\=\sqrt{xa+{(n+x)}^2+a\sqrt{x(a+n)+{(n+x)}^2+(a+n)\sqrt{x(a+2n)+{(n+x)}^2+(a+2n)\sqrt{\ldots+(a+(k-2)n) \\ \sqrt{ x(a+(k-1)n)+{(n+x)}^2+a(a+(k+1)n+x)}}}}} \ \ldots (10) $$

etc.

Putting $ n=0$ in equation (9)
we have
$ x+a =\sqrt{ax+{a}^2+x\sqrt{ax+{a}^2+x\sqrt{ax+{a}^2+x\sqrt{\ldots+x\sqrt{ax+{a}^2+x(x+a)}}}}} \ \ldots (11)$
or just, $ x+a =\sqrt{ax+{a}^2+x\sqrt{ax+{a}^2+x\sqrt{ax+{a}^2+x\sqrt{\ldots}}}} \ \ldots (12)$

Again putting $ x=1 \ a=0$ in (9)

$ 1+n =\sqrt{{n}^2+\sqrt{n^2+(1+n)\sqrt{{n}^2+(1+2n)\sqrt{\ldots+(1+(k-2)n)\sqrt{{n}^2+1+(k+1)n}}}}} \ldots (13)$

Putting $ x=1 \ a=0$ in equation (8)
$ 1+n =\sqrt{{n}^2+\sqrt{{n}^2+(1+n)\sqrt{{n}^2+(1+2n)(1+4n)}}} \ \ldots (14)$

Again putting $ x=a=n$ =n(say) then
$ 3n=\sqrt{n^2+4{n}^2+n\sqrt{2n^2+4{n}^2+2n\sqrt{3n^2+4{n}^2+3n\sqrt{\ldots+(k-1)n\sqrt{kn^2+4{n}^2+(k+3)n^2}}}}}$
or, $ 3n=\sqrt{5{n}^2+n\sqrt{6{n}^2+2n\sqrt{7{n}^2+3n\sqrt{\ldots+(k-1)n\sqrt{(k+4)n^2+(k+3)n^2}}}}} \ \ldots (15)$

Putting $ n=1$ in (15)
$ 3=\sqrt{5+\sqrt{6+2\sqrt{7+3\sqrt{\ldots+(k-1)\sqrt{(2k+7)}}}}} \ \ldots (16)$

Putting $ x=n \in \mathbb{N}$ and $ a=0$ in (9) we get even numbers
$ 2n =\sqrt{{n}^2+n\sqrt{{n}^2+2n\sqrt{{n}^2+3n)\sqrt{\ldots+(k-1)n\sqrt{(k-1)n)+{n}^2+(k+2)n^2}}}}} \ \ldots (17)$

Similary putting $ x=n \in \mathbb{N}$ and $ a=1$ in (9) we get a formula for odd numbers:
$$ 2n+1 =\sqrt{n+{(n+1)}^2+n\sqrt{2n+{(n+1)}^2+2n\sqrt{3n+{(n+1)}^2+3n\sqrt{\ldots+(k-1)n\sqrt{kn+{(n+1)}^2+(k+2)n^2+n}}}}} \ \ldots (18) $$
or,
$$ 2n+1 =\sqrt{n+{(n+1)}^2+n\sqrt{2n+{(n+1)}^2+2n\sqrt{3n+{(n+1)}^2+3n\sqrt{\ldots+(k-1)n\sqrt{(k+3)n^2+(k+3)n+1}}}}} \ \ldots (19)$$
Comments?

7 comments
  1. hi..i am utkarsh.i have been working on a formula and i am stuck in nested radicals.
    basically, i want to find out value of sqrt(2+sqrt(2+sqrt(2…………….sqrt(2)
    for x of times,for example, for x=3, i want value of sqrt(2+sqrt(2+sqrt(2+sqrt(2))))
    would you please help me?

  2. Dear Utkarsh! Thanks for reading the post. Before I comment, I would like to mention that Ramanujan Nested Radical formulas are proposed for infinite number of radicals in a number. When, there are finite number of nested radicals, the exact numerical value is calculated by an advanced calculator.
    Let me be clear. $ \sqrt {2}$ always means $ \sqrt {2}$ or approximately 1.4142… Similarly $ \sqrt {2+\sqrt{2}}$ has its own numerical value. And so on. As we increases the number of squareroots, the value tends to 2 (not exactly 2).
    But when infinite terms are considered, the numerical values cam be easily calculated using algebraic equations.
    Let $ N= \sqrt {2+\sqrt{2+\sqrt{2+ \ldots +\sqrt{2}}}}$ upto infinte terms
    $ N= \sqrt {2+N}$
    or, $ N^2-N-2=0$.
    The non-negative solution of above quadratic equation is the numerical value of the nested radical (i.e., N=2).

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

You May Also Like

Everywhere Continuous Non-differentiable Function

Weierstrass had drawn attention to the fact that there exist functions which are continuous for every value of $ x$ but do not possess a derivative for any value. We now consider the celebrated function given by Weierstrass to show this fact. It will be shown that if $ f(x)= \displaystyle{\sum_{n=0}^{\infty} } b^n \cos (a^n \pi x) \ \ldots (1)…

Memory Methods

Memory, in human reference, is the ability to store retain and recall information when needed. Without hammering the mind in the definitions, let we look into the ten methods of boosting our memory:  1. Simple Repetition Method The classical method, very popular as in committing poems to memory by reading them over and over. 2. Full Concentration Method Concentrate on…

Solving Integral Equations – (1) Definitions and Types

If you have finished your course in Calculus and Differential Equations, you should head to your next milestone: the Integral Equations. This marathon series (planned to be of 6 or 8 parts) is dedicated to interactive learning of integral equations for the beginners —starting with just definitions and demos —and the pros— taking it to the heights of problem solving.…

Getting Started with Measure Theory

Last year, I managed to successfully finish Metric Spaces, Basic Topology and other Analysis topics. Starting from the next semester I’ll be learning more pure mathematical topics, like Functional Analysis, Combinatorics and more. The plan is to lead myself to Combinatorics by majoring Functional Analysis and Topology. But before all those, I’ll be studying measure theory and probability this July – August. Probability…

Two Interesting Math Problems

Problem1: Smallest Autobiographical Number: A number with ten digits or less is called autobiographical if its first digit (from the left) indicates the number of zeros it contains,the second digit the number of ones, third digit number of twos and so on. For example: 42101000 is autobiographical. Find, with explanation, the smallest autobiographical number. Solution of Problem 1 Problem 2:…

How many apples did each automattician eat?

Four friends Matt, James, Ian and Barry, who all knew each other from being members of the Automattic, called Automatticians, sat around a table that had a dish with 11 apples in it. The chat was intense, and they ended up eating all the apples. Everybody had at least one apple, and everyone know that fact, and each automattician knew…