Introduction

In earlier parts we discussed about the basics of integral equations and how they can be derived from ordinary differential equations. In second part, we also solved a linear integral equation using trial method. Now we are in a situation from where main job of solving Integral Equations can be started. But before we go ahead to that mission, it will be better to learn how can integral equations be converted into differential equations.

Integral Equation ⇔ Differential Equation

The method of converting an integral equation into a differential equation is exactly opposite to what we did in last part where we converted boundary value differential equations into respective integral equations. In last workoutinitial value problems$ always ended up as Volterra Integrals$ and boundary value problems$ resulted as Fredholm Integrals. $ In converse process we will get initial value problems$ from Volterra Integrals and boundary value problems$ from Fredholm Integral Equations. Also, as in earlier conversion we continuously integrated the differentials within given boundary values, we will continuously differentiate provided integral equations and refine the results by putting all constant integration limits.

The above instructions can be practically understood by following two examples. First problem involves the conversion of Volterra Integral Equation into differential equation and the second problem displays the conversion of Fredholm Integral Equation into differential equation.

Problem 1: Converting Volterra Integral Equation into Ordinary Differential Equation with initial values

Convert $$y(x) = – \int_{0}^x (x-t) y(t) dt$$ into initial value problem.

Please note that this was the same integral equation we obtained after converting initial value problem: $$y”+y=0$$ when $$y(0)=y'(0)=0$$ ( See Problem 1 of Part 3 )

Solution:

We have, $$y(x) = – \int_{0}^x (x-t) y(t) dt \ldots (1)$$

Differentiating (1) with respect to $x$ will give

$$y'(x) = -\frac{d}{dx} \int_{0}^x (x-t) y(t) dt$$

$$ \Rightarrow y'(x)=-\int_{0}^x y(t) dt \ldots (2)$$

Again differentiating (2) w.r.t. $x$ will give

$$ y”(x)=-\frac{d}{dx}\int_{0}^x y(t) dt$$

$$ \Rightarrow y”(x)=-y(x) \ldots (3′)$$

$$ \iff y”(x)+y(x)=0 \ldots (3) $$

Putting the lower limit $x=0$ (i.e., the initial value) in equation (1) and (2) will give, respectively the following:

 $$y(0) = – \int_{0}^0 (0-t) y(t) dt$$

$$y(0)=0 \ldots (4)$$

And, $$ y'(0)=-\int_{0}^0 y(t) dt$$

$$y'(0)=0 \ldots (5)$$

These equations (3), (4) and (5) form the ordinary differential form of given integral equation.  $\Box$

 

Problem 2: Converting Fredholm Integral Equation into Ordinary Differential Equation with boundary values

Convert $$ y(x) =\lambda \int_{0}^{l} K(x,t) y(t) dt$$ into boundary value problem where $$ K(x,t)=\frac{t(l-x)}{l} \qquad \mathbf{0<t<x} $$ and $$ K(x,t)=\frac{x(l-t)}{l} \qquad \mathbf{x<t<l}$$

Solution:

Please see Example 2 of Part 3.

The given integral equation is $$ y(x) =\lambda \int_{0}^{l} K(x,t) y(t) dt \ldots (1)$$ or $$y(x) =\lambda (\int_{0}^{x} \frac{(l-x)t}{l} y(t) dt + \int_{x}^{l} \frac{x(l-t)}{l} y(t) dt) \ldots (2)$$

Differentiating (2) with respect to $x$ will give $$ y'(x) = -\frac{\lambda}{l} \int_{0}^x t y(t) dt + \frac{\lambda}{l} \int_{x}^l (l-t) y(t) dt \ldots (3)$$

Continued differentiation of (3) will give $$ y”(x) = -\lambda y(x)$$ That’s $$ y”(x) +\lambda y(x) =0 \ldots (4)$$

To get the boundary values, we place $x$ equal to both integration limits in (1) or (2).

$x =0 \Rightarrow$ $$y(0)=0 \ldots (5)$$

$x=l \Rightarrow$ $$y(l)=0 \ldots (6)$$

The ODE (4) with boundary values (5) & (6) is the exact conversion of given integral equation. $\Box$

Total
0
Shares


Feel free to ask questions, send feedback and even point out mistakes. Great conversations start with just a single word. How to write better comments?
2 comments
Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

You May Also Like

The Lindemann Theory of Unimolecular Reactions

[ Also known as Lindemann-Hinshelwood mechanism.] It is easy to understand a bimolecular reaction on the basis of collision theory. When two molecules A and B collide, their relative kinetic energy exceeds the threshold energy with the result that the collision results in the breaking of comes and the formation of new bonds. But how can one account for a…
symmetry
Read More

Symmetry in Physical Laws

‘Symmetry’ has a special meaning in physics. A picture is said to be symmetrical if one side is somehow the same as the other side. Precisely, a thing is symmetrical if one can subject it to a certain operation and it appears exactly the same after the operation. For example, if we look at a base that is left and…

Solving Integral Equations (2) – Square Integrable Functions, Norms, Trial Method

Square Integrable function or quadratically integrable function $\mathfrak{L}_2$ function A function $y(x)$ is said to be square integrable or $\mathfrak{L}_2$ function on the interval $(a,b)$ if $$\displaystyle {\int_a^b} {|y(x)|}^2 dx <\infty$$ or $$\displaystyle {\int_a^b} y(x) \bar{y}(x) dx <\infty$$. For further reading, I suggest this Wikipedia page. $y(x)$ is then also called ‘regular function’. The kernel $K(x,t)$ , a function of two variables is…

Two Interesting Math Problems

Problem1: Smallest Autobiographical Number: A number with ten digits or less is called autobiographical if its first digit (from the left) indicates the number of zeros it contains,the second digit the number of ones, third digit number of twos and so on. For example: 42101000 is autobiographical. Find, with explanation, the smallest autobiographical number. Solution of Problem 1 Problem 2:…
Read More

Analysis of Meteorological Data of Pantnagar Weather Station

About This post is actually a summary of a research project I took under INSPIRE-SHE Scholarship Program by Dept. of Science and Technology, Govt. of India. My plan was to make the content open-source on the web that faults could be corrected by time. The language is simple and very easy to understand and the ease of understanding is focused on…