Square Integrable Functions, Norms, Trial Method in Integral Equations
In this article, I will teach you about Square Integrable Functions, Norms and the solution of Integral Equations by the trial method.
Table of Contents
Don't forget to refer: Definitions and Types of Integral Equations
Square Integrable function or quadratically integrable function $\mathfrak{L}_2$ function
A function $y(x)$ is said to be square integrable or $\mathfrak{L}_2$ function on the interval $(a,b)$ if $$\displaystyle {\int_a^b} {|y(x)|}^2 dx <\infty$$ or $$\displaystyle {\int_a^b} y(x) \bar{y}(x) dx <\infty$$.
For further reading, I suggest this Wikipedia page.
$y(x)$ is then also called 'regular function'.
The kernel $K(x,t)$ , a function of two variables is an $\mathfrak{L_2}$ - function if atleast one of the following is true:
- $\int_{x=a}^b \int_{t=a}^b |K(x,t)|^2 dx dt <\infty$
- $\int_{t=a}^b |K(x,t)|^2 dx <\infty$
- $\int_{x=a}^b |K(x,t)|^2 dt <\infty$
Inner Product of two $\mathfrak{L}_2$ functions
The inner product or scalar product $(\phi, \psi)$ of two complex $\mathfrak{L}_2$ functions $\phi$ and $\psi$ of a real variable $x$ ; $a \le x \le b$ is defined as
$(\phi, \psi) = \int_a^b \phi(x) \bar{\psi}(x) dx$ .
Where $\bar{\psi}(x)$ is the complex conjugate of $\psi(x)$.
When $(\phi, \psi) =0$, or $\int_a^b \phi(x) \bar{\psi}(x) dx =0$ then $\phi$ and $\psi $ are called orthogonal to each other.
Norm of a function
The norm of a complex- function $y(x)$ of a single real variable $x$ is given by
$|| y(x) || = \sqrt{\int_a^b y(x) \bar{y(x)} dx}=\sqrt{\int_a^b |y(x)|^2 dx}$
Where $\bar{y(x)}$ represents the complex conjugate of $y(x)$.
The norm of operations between any two functions $\phi$ and $\psi$ follows Schwarz and Minkowski's triangle inequalities, provided
$|| \phi \cdot \psi || \le ||\phi|| \cdot ||\psi||$ ---- Schwarz's Inequality
$|| \phi +\psi || \le ||\phi|| + ||\psi||$ -------Triangle Inequality/Minkowski Inequality
Solution of Integral Equations by Trial Method
A solution of an equation is the value of the unknown function which satisfies the complete equation. The same definition is followed by the solution of an integral equation too. First of all we will handle problems in which a value of the unknown function is given and we are asked to verify whether it's a solution of the integral equation or not. The following example will make it clear:
- Show that $y(x)= {(1+x^2)}^{-3/2}$ is a solution of $$y(x) = \dfrac{1}{1+x^2} - \int_0^x \dfrac{t}{1+x^2} y(t) dt$$.
This is a Volterra's equation of second kind with lower limit $a=0$ and upper limit being the variable $x$.
Solution: Given $$y(x) = \dfrac{1}{1+x^2} - \int_0^x \dfrac{t}{1+x^2} y(t) dt \ldots (1)$$
where $y(x)= {(1+x^2)}^{-3/2} \ldots (2)$
and therefore, $y(t)= {(1+t^2)}^{-3/2} \ldots (3)$ (replacing x by t).
The Right Hand Side of (1)
$=\dfrac{1}{1+x^2} - \int_0^x \dfrac{t}{1+x^2} y(t) dt$
$=\dfrac{1}{1+x^2} - \int_0^x \dfrac{t}{1+x^2} {(1+t^2)}^{-3/2} dt$ [putting the value of $y(t)$ from (3)]
$=\dfrac{1}{1+x^2} -\dfrac{1}{1+x^2} \int_0^x \dfrac{t}{{(1+t^2)}^{3/2}} dt$
since $\dfrac{1}{1+x^2}$ is independent quantity as the integration is done with respect to $t$ i.e., dt only, therefore $\dfrac{1}{1+x^2}$ can be excluded outside the integration sign.
$=\dfrac{1}{1+x^2} +\dfrac{1}{1+x^2} \left({\dfrac{1}{\sqrt{1+x^2}} -1}\right)$
Since $\int_0^x \dfrac{t}{{1+t^2}^{3/2}} dt $=$1-\dfrac{1}{\sqrt{1+x^2}}$
$={(1+x^2)}^{-3/2}$
$=y(x)$
=The Left Hand Side of (2)
Hence, $y(x) ={(1+x^2)}^{-3/2}$ is a solution of (1). $\Box$
The trial method isn't exactly the way an integral equation can be solved, it is, however, very important from a learning and pedagogy point of view.
In upcoming articles, we'll learn various other techniques to solve an integral equation.