Formulas are the most important part of mathematics and as we all know one is the backbone of the latter. Considering there are thousands of mathematical formulas to help people develop analytical approach and solve problems easily — there are some that go beyond. Some formulas aren’t just timesaving but those also do wonders. In this article I have collected some of the finest time-saving formulas in mathematics.

The calendar formula

This formula is extremely helpful in finding weekday for a specific date in history. More about this can be found in the article “Calendar Formula: Finding the Week-days“.

Infinite Summation into Integration

We all know that integration can be interpreted as summation and vice versa. Infinite summations can be easily converted into finite integrals which on solution yields result to the infinite summation. The methods of converting infinite summations is pretty easy and thus the whole process saves a lot of time.

Theory is that if $f$ is a positive increasing function then $f(n) \le \int_n^{n+1} f(x) dx \le f(n+1) $.

Similarly, if $f$ is a positive decreasing function then $f(n) \ge \int_n^{n+1} f(x) dx \ge f(n+1) $.

For increasing $f$, $\sum_{i=0}^{n-1} f(i) \le \int_0^{n} f(x) dx \le \sum_{i=0}^{n-1} f(i+1) $

or, $\sum_{i=0}^{n} f(i)-f(n) \le \int_0^{n} f(x) dx \le \sum_{i=0}^{n} f(i)-f(0) $ or $f(0) \le \sum_{i=0}^{n} f(i)-\int_0^{n} f(x) dx \le f(n) $.

For a decreasing function, the inequalities are reversed.

Khan Academy has a very good video about converting infinite summations into integral problems.

Integral Equation Magical Formula

This helps in converting a multiple integral equation to a simple linear integral equation.

Consider an integral of order n is given by $ \displaystyle{\int_{\Delta}^{\Box}} f(x) dx^n$

We can prove that $ \displaystyle{\int_{a}^{t}} f(x) dx^n = \displaystyle{\int_{a}^{t}} \dfrac{(t-x)^{n-1}}{(n-1)!} f(x) dx$

This formula can help you solve tedious integral problems in a jiffy. Just compare the parameters and you are good to go!

For example, let’s try to solve $ \int_0^1 x^2 dx^2$

Solution:

$$ \int_0^1 x^2 dx^2$$

$$ = \int_0^1 \dfrac{(1-x)^{2-1}}{(2-1)!} x^2 dx$$

(Compare, $t=1$)

$ =\int_0^1 (1-x) x^2 dx$

$ =\int_0^1 (1-x) x^2 dx$

$ =\int_0^1 (x^2-x^3) dx =1/12$

Done!

$\sin^m x \cos^n x$ integration formula

To integrate $\sin^m x \cos^n x$ with respect to $x$, we use simple substitution considering if $n$ is odd or $m$ is odd or both are even.

    1. If n is odd, then ignore what m is and use substitution as $u = \sin x$ or $ du = \cos x \ dx$ and convert the remaining factors of cosine using $\cos^2 x = 1 – \sin^2 x$. This will work even if $m = 0.$

      This can be applied to $\int \sin^5 x \cos^3 x \ dx$ like integrals.

 

    1. If m is odd and n is even — use substitution as $u = \cos x$ or $du = − \sin x \ dx$ and convert the remaining factors of sine using $\sin^2 x = 1 – \cos^2 x$. This will work if $n = 0.$This can be applied to $\int \sin^3 x \cos^8 x \ dx$ like integrals.

 

  1. If both powers are even we reduce the powers using the half angle formulas: $\sin^2 x = \dfrac{1}{2} ( 1 – \cos 2x ) $; and
    $\cos^2 x = \dfrac{1}{2} (1 + \cos 2x) $Alternatively, you can switch to powers of sine and cosine using $\cos^2 x+ \sin^2 x = 1$ and use the reduction formulas. Example: $\int \sin^4 x \cos^2 x \ dx$

L’ Hospital’s Rule

According to it if we have an indeterminate form for a limit problem, like 0/0 or $\dfrac{\infty}{\infty}$, then all we need to do is differentiate the numerator and differentiate the denominator and then take the limit. Read more about this on Mathworld.

Liouville & Dirichlet’s Theorem

These theorems are used to easily convert surface or volume integrals into $\Gamma$-functions.

    1. $$ \int \int \int_{V} x^{l-1} y^{m-1} z^{n-1} dx dy ,dz = \frac { \Gamma {(l)} \Gamma {(m)} \Gamma {(n)} }{ \Gamma{(l+m+n+1)} } $$where V is the region given by $ x \ge 0 y \ge 0 z \ge 0 x+y+z \le 1 $ .

 

  1. If $ x, y, z$ are all positive such that $ h_1 < (x+y+z) < h_2 $ then $$ \int \int \int_{V} x^{l-1} y^{m-1} z^{n-1} F (x,y,z) dx dy ,dz = \frac { \Gamma {(l)} \Gamma {(m)} \Gamma {(n)} }{ \Gamma{(l+m+n)} } \int_{h_1}^{h_2} F(h) h^{l+m+n-1} dh $$

Detailed information about Liouville & Dirichlet’s Theorem can be found here.

Remainder Theorems

There are several formulas in Number Theory on finding divisibility and remainders. As an example, general remainder theorem is a general approach of Euclidean division of polynomials while on the other hand Euler’s Remainder Theorem works as an excellent utility to find divisibility of large numbers.

More to be added soon!

1 comment
Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

You May Also Like

How Many Fishes in One Year? [A Puzzle in Making]

This is a puzzle which I told to my classmates during a talk, a few days before. I did not represent it as a puzzle, but a talk suggesting the importance of Math in general life. This is partially solved for me and I hope you will run your brain-horse to help me solve it completely. If you didn’t notice,…

Just another way to Multiply

Multiplication is probably the most important elementary operation in mathematics; even more important than usual addition. Every math-guy has its own style of multiplying numbers. But have you ever tried multiplicating by this way? Exercise: $ 88 \times 45$ =? Ans: as usual :- 3960 but I got this using a particular way: 88            45…

Abel Prize for 2014 to Yakov Sinai

Mathematical Physicist Yakov Gregory Sinai, (b. 21st September 1935, 78 years old) has been awarded the prestigious Abel Prize for 2014 by the Norwegian Academy of Science and Letters (NASL). The President of the NASL, Nils C. Stenseth, announced the winner of the 2014 Abel Prize at the Academy in Oslo on 26 March 2014. The Abel Prize recognizes contributions of…

Three Children, Two Friends and One Mathematical Puzzle

Two close friends, Robert and Thomas, met again after a gap of several years. Robert Said: I am now married and have three children. Thomas Said: That’s great! How old they are? Robert: Thomas! Guess it yourself with some clues provided by me. The product of the ages of my children is 36. Thomas: Hmm… Not so helpful clue. Can…

Set Theory, Functions and Real Number System

Sets In mathematics, Set is a well defined collection of distinct objects. The theory of Set as a mathematical discipline rose up with George Cantor, German mathematician, when he was working on some problems in Trigonometric series and series of real numbers, after he recognized the importance of some distinct collections and intervals. Cantor defined the set as a ‘plurality…

The Cattle Problem

This is a famous problem of intermediate analysis, also known as ‘Archimedes’ Cattle Problem Puzzle’, sent by Archimedes to Eratosthenes as a challenge to Alexandrian scholars. In it one is required to find the number of bulls and cows of each of four colors, the eight unknown quantities being connected by nine conditions. These conditions ultimately form a Pell equation…