Dirichlet’s Theorem and Liouville’s Extension of Dirichlet’s Theorem

Topic

Beta & Gamma functions

Statement of Dirichlet’s Theorem

$ \int  \int  \int_{V}  x^{l-1} y^{m-1} z^{n-1} dx  dy ,dz = \frac { \Gamma {(l)} \Gamma {(m)} \Gamma {(n)} }{ \Gamma{(l+m+n+1)} } $ ,
where V is the region given by $ x \ge 0 y \ge 0 z \ge 0  x+y+z \le 1 $ .

Brief Theory on Gamma and Beta Functions

Gamma Function

If we consider the integral $ I =\displaystyle{\int_0^{\infty}} e^{-t} t^{a-1} \mathrm dt$ , it is once seen to be an infinite and improper integral. This integral is infinite because the upper limit of integration is infinite and it is improper because $ t=0$ is a point of infinite discontinuity of the integrand, if $ a<1$ , where $ a$ is either real number or real part of a complex number. This integral is known as Euler’s Integral. This is of a great importance in mathematical analysis and calculus. The result, i.e., integral, is defined as a new function of real number $ a$ , as $ \Gamma (a) =\displaystyle{\int_0^{\infty}} e^{-t} t^{a-1} \mathrm dt$ .

Definitions for Gamma Function
Let $ a$ be any positive real number, then we can integrate the Eulerian Integral $ I =\displaystyle{\int_0^{\infty}} e^{-t} t^{a-1} \mathrm dt$ by assuming $ t^{a-1}$ as first function and $ e^{-t}$ as second function, integrating it by parts.
After a little work, one might get
$ I =\displaystyle{\int_0^{\infty}} e^{-t} t^{a-1} \mathrm dt=(a-1)(a-2) \ldots 2\cdot 1$ .
This is defined as gamma function of $ a$ (i.e., $ \Gamma (a)$ ) and $ \Gamma (a) =\displaystyle{\int_0^{\infty}} e^{-t} t^{a-1} \mathrm dt =(a-1)(a-2) \ldots 2 \cdot 1$ .

If $ a$ is a positive integer, then we can write $ \Gamma a=(a-1)!$ .
This definition is not defined for Gamma Function for negative numbers and zero. The second definition of Gamma Function is given terms of Euler’s infinite limit
$ \Gamma (a)=\displaystyle{\lim_{m \to \infty}} \dfrac{1\cdot 2 \cdot 3 \cdots m}{a(a+1)(a+2) \ldots (a+m)} m^a$ , where $ a$ be either real or complex number.

Third definition of gamma function is given in terms of Weierstrass’s infinite product, as $ \Gamma (a)$ for any number $ a$ is,
$ \dfrac{1}{\Gamma a} =a e^{a \gamma} \displaystyle{\prod_{m=1}^{\infty}} \left({1+\frac{m}{a}}\right) e^{-a/m}$ ; where $ \gamma =\lim_{n \to {\infty}} \left({1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}-\log n}\right)$ is a constant, called Euler-Mascheroni Constant and its value is approximately $ 0.5772157$ .
All the three definitions defined above are equivalent to each other.

Important Properties of Gamma Functions
1. If $ n$ is a positive integer: $ \Gamma (n)=(n-1)!=(n-1)(n-2)(n-3)\ldots 2\cdot 1$
2. If $ n$ is a negative integer or zero: $ \Gamma (n)=\infty$
3. If $ n$ is a non-integer number, then $ \Gamma (n)$ exists and has a finite value.

Beta Function

The beta function of two values $x$ and $y$ is defined as an integral:

$$ \displaystyle B \left({x, y}\right) := \int_{\mathop 0}^{\mathop 1} t^{x – 1} \left({1 – t}\right)^{y – 1} \ \mathrm d t $$

In terms of Gamma Functions it is defined by:

$$ B \left({x, y}\right) := \dfrac {\Gamma \left({x}\right) \Gamma \left({y}\right)} {\Gamma \left({x + y}\right)} $$


Proof

I haven’t yet learned about the rigorous proof of the Dirichlet’s Theorem. Here is an alternate proof.  We have to evaluate the given triple integral over the volume enclosed by the three coordinate planes and the plane $ x+y+z=1$ .
Hence we may write the given triple integral as
$ \int_{0}^{1}  \int_{0}^{1-x}  \int_{0}^{1-x-y}  x^{l-1} y^{m-1} z^{n-1} dx  dy  dz $

=$ \int_{0}^{1} ! \int_{0}^{1-x} ! x^{l-1} y^{m-1} {[z^{n}/n]}_{0}^{1-x-y}  dx  dy$

=$ \frac {1}{n} \int_{0}^{1}  \int_{0}^{1-x}  x^{l-1} y^{m-1} {(1-x-y)}^{n}  dx  dy$

Now substuting $ y=(1-x)t$ or $ dy=(1-x) dt$ we get

=$ \frac {1}{n} \int_{0}^{1}  \int_{0}^{1}  x^{l-1} {(1-x)}^{m-1} t^{m-1} {[1-x-(1-x)t]}^{n} (1-x) dx  dt$

=$ \frac {1}{n} \int_{0}^{1}  \int_{0}^{1}  x^{l-1} {(1-x)}^{m-1} t^{m-1} {(1-x)}^{n} {(1-t)}^{n} (1-x) dx  dt$

=$ \frac {1}{n} \int_{0}^{1}  \int_{0}^{1}  x^{l-1} {(1-x)}^{m+n} t^{m-1} {(1-t)}^{n} dx  dt$

=$ \frac {1}{n} \times \int_{0}^{1}  x^{l-1} {(1-x)}^{m+n}  dx \times \int_{0}^{1}  t^{m-1} {(1-t)}^n  dt $

=$ \frac {B(l m+n+1) \times B(m n+1)}{n} $

=$ \frac {1} {n} \times \frac { \Gamma {(l)} \Gamma {(m+n+1)} } { \Gamma {(l+m+n+1)} } $ $ \times $ $ \frac { \Gamma{(m)} \Gamma {(n+1)} } { \Gamma {(m+n+1)} } $

=$ \frac { \Gamma {(l)} \Gamma {(m)} \Gamma {(n)} }{ \Gamma{(l+m+n+1)} } $
i.e. the statement.


Liouville’s Extension of Dirichlet’s Theorem

If $ x, y, z$ are all positive such that
$ h_1 < (x+y+z) < h_2 $ then
$ \int  \int  \int_{V}  x^{l-1} y^{m-1} z^{n-1}  F (x,y,z)  dx  dy ,dz = \frac { \Gamma {(l)} \Gamma {(m)} \Gamma {(n)} }{ \Gamma{(l+m+n)} } \int_{h_1}^{h_2} F(h)  h^{l+m+n-1} dh $

 

Total
0
Shares


Feel free to ask questions, send feedback and even point out mistakes. Great conversations start with just a single word. How to write better comments?
2 comments
  1. Liouville’s Extension of Dirichlet’s Theorem
    Under the integral, it’s not F(x,y,z)
    It should be F(x+y+z)

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

You May Also Like

Statistical Physics: Macrostates and Microstates

Consider some (4, say) distinguishable particles. If we wish to distribute them into two exactly similar compartments in an open box, then the priori probability for a particle of going into any one of the compartments will exactly 1/2 as both compartments are identical. If the four particles are named as a , b, c and d and the compartments…

Newton’s Trinity College Notebook is Online!

Cambridge Digital Library had made Newton’s exceptionally great works online. Some times ago they added the Trinity College Notebook by Isaac Newton, which he used to teach in the college in 17th century.     Read More About the Project Here. List of other works of Newton can be found at www.newton.ac.uk/newton.html.

Hopalong Orbits Visualizer: Stunning WebGL Experiment

Just discovered Barry Martin’s Hopalong Orbits Visualizer — an excellent abstract visualization, which is rendered in 3D using Hopalong Attractor algorithm, WebGL and Mrdoob’s three.js project. Hop to the source website using your desktop browser (with WebGl and Javascript support) and enjoy the magic. PS: Hopalong Attractor Algorithm Hopalong Attractor predicts the locus of points in 2D using this algorithm…
cropped  header.jpg
Read More

381654729 : An Interesting Number Happened To Me Today

You might be thinking why am I writing about an individual number? Actually, in previous year annual exams, my registration number was 381654729. Which is just an ‘ordinary’ 9-digit long number. I never cared about it- and forgot it after exam results were announced. But today morning, when I opened “Mathematics Today” magazine’s October 2010, page 8; I was brilliantly…