Dirichlet’s Theorem and Liouville’s Extension of Dirichlet’s Theorem

Topic

Beta & Gamma functions

Statement of Dirichlet’s Theorem

$ \int  \int  \int_{V}  x^{l-1} y^{m-1} z^{n-1} dx  dy ,dz = \frac { \Gamma {(l)} \Gamma {(m)} \Gamma {(n)} }{ \Gamma{(l+m+n+1)} } $ ,
where V is the region given by $ x \ge 0 y \ge 0 z \ge 0  x+y+z \le 1 $ .

Brief Theory on Gamma and Beta Functions

Gamma Function

If we consider the integral $ I =\displaystyle{\int_0^{\infty}} e^{-t} t^{a-1} \mathrm dt$ , it is once seen to be an infinite and improper integral. This integral is infinite because the upper limit of integration is infinite and it is improper because $ t=0$ is a point of infinite discontinuity of the integrand, if $ a<1$ , where $ a$ is either real number or real part of a complex number. This integral is known as Euler’s Integral. This is of a great importance in mathematical analysis and calculus. The result, i.e., integral, is defined as a new function of real number $ a$ , as $ \Gamma (a) =\displaystyle{\int_0^{\infty}} e^{-t} t^{a-1} \mathrm dt$ .

Definitions for Gamma Function
Let $ a$ be any positive real number, then we can integrate the Eulerian Integral $ I =\displaystyle{\int_0^{\infty}} e^{-t} t^{a-1} \mathrm dt$ by assuming $ t^{a-1}$ as first function and $ e^{-t}$ as second function, integrating it by parts.
After a little work, one might get
$ I =\displaystyle{\int_0^{\infty}} e^{-t} t^{a-1} \mathrm dt=(a-1)(a-2) \ldots 2\cdot 1$ .
This is defined as gamma function of $ a$ (i.e., $ \Gamma (a)$ ) and $ \Gamma (a) =\displaystyle{\int_0^{\infty}} e^{-t} t^{a-1} \mathrm dt =(a-1)(a-2) \ldots 2 \cdot 1$ .

If $ a$ is a positive integer, then we can write $ \Gamma a=(a-1)!$ .
This definition is not defined for Gamma Function for negative numbers and zero. The second definition of Gamma Function is given terms of Euler’s infinite limit
$ \Gamma (a)=\displaystyle{\lim_{m \to \infty}} \dfrac{1\cdot 2 \cdot 3 \cdots m}{a(a+1)(a+2) \ldots (a+m)} m^a$ , where $ a$ be either real or complex number.

Third definition of gamma function is given in terms of Weierstrass’s infinite product, as $ \Gamma (a)$ for any number $ a$ is,
$ \dfrac{1}{\Gamma a} =a e^{a \gamma} \displaystyle{\prod_{m=1}^{\infty}} \left({1+\frac{m}{a}}\right) e^{-a/m}$ ; where $ \gamma =\lim_{n \to {\infty}} \left({1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}-\log n}\right)$ is a constant, called Euler-Mascheroni Constant and its value is approximately $ 0.5772157$ .
All the three definitions defined above are equivalent to each other.

Important Properties of Gamma Functions
1. If $ n$ is a positive integer: $ \Gamma (n)=(n-1)!=(n-1)(n-2)(n-3)\ldots 2\cdot 1$
2. If $ n$ is a negative integer or zero: $ \Gamma (n)=\infty$
3. If $ n$ is a non-integer number, then $ \Gamma (n)$ exists and has a finite value.

Beta Function

The beta function of two values $x$ and $y$ is defined as an integral:

$$ \displaystyle B \left({x, y}\right) := \int_{\mathop 0}^{\mathop 1} t^{x – 1} \left({1 – t}\right)^{y – 1} \ \mathrm d t $$

In terms of Gamma Functions it is defined by:

$$ B \left({x, y}\right) := \dfrac {\Gamma \left({x}\right) \Gamma \left({y}\right)} {\Gamma \left({x + y}\right)} $$


Proof

I haven’t yet learned about the rigorous proof of the Dirichlet’s Theorem. Here is an alternate proof.  We have to evaluate the given triple integral over the volume enclosed by the three coordinate planes and the plane $ x+y+z=1$ .
Hence we may write the given triple integral as
$ \int_{0}^{1}  \int_{0}^{1-x}  \int_{0}^{1-x-y}  x^{l-1} y^{m-1} z^{n-1} dx  dy  dz $

=$ \int_{0}^{1} ! \int_{0}^{1-x} ! x^{l-1} y^{m-1} {[z^{n}/n]}_{0}^{1-x-y}  dx  dy$

=$ \frac {1}{n} \int_{0}^{1}  \int_{0}^{1-x}  x^{l-1} y^{m-1} {(1-x-y)}^{n}  dx  dy$

Now substuting $ y=(1-x)t$ or $ dy=(1-x) dt$ we get

=$ \frac {1}{n} \int_{0}^{1}  \int_{0}^{1}  x^{l-1} {(1-x)}^{m-1} t^{m-1} {[1-x-(1-x)t]}^{n} (1-x) dx  dt$

=$ \frac {1}{n} \int_{0}^{1}  \int_{0}^{1}  x^{l-1} {(1-x)}^{m-1} t^{m-1} {(1-x)}^{n} {(1-t)}^{n} (1-x) dx  dt$

=$ \frac {1}{n} \int_{0}^{1}  \int_{0}^{1}  x^{l-1} {(1-x)}^{m+n} t^{m-1} {(1-t)}^{n} dx  dt$

=$ \frac {1}{n} \times \int_{0}^{1}  x^{l-1} {(1-x)}^{m+n}  dx \times \int_{0}^{1}  t^{m-1} {(1-t)}^n  dt $

=$ \frac {B(l m+n+1) \times B(m n+1)}{n} $

=$ \frac {1} {n} \times \frac { \Gamma {(l)} \Gamma {(m+n+1)} } { \Gamma {(l+m+n+1)} } $ $ \times $ $ \frac { \Gamma{(m)} \Gamma {(n+1)} } { \Gamma {(m+n+1)} } $

=$ \frac { \Gamma {(l)} \Gamma {(m)} \Gamma {(n)} }{ \Gamma{(l+m+n+1)} } $
i.e. the statement.


Liouville’s Extension of Dirichlet’s Theorem

If $ x, y, z$ are all positive such that
$ h_1 < (x+y+z) < h_2 $ then
$ \int  \int  \int_{V}  x^{l-1} y^{m-1} z^{n-1}  F (x,y,z)  dx  dy ,dz = \frac { \Gamma {(l)} \Gamma {(m)} \Gamma {(n)} }{ \Gamma{(l+m+n)} } \int_{h_1}^{h_2} F(h)  h^{l+m+n-1} dh $

 

2 comments
  1. Liouville’s Extension of Dirichlet’s Theorem
    Under the integral, it’s not F(x,y,z)
    It should be F(x+y+z)

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

You May Also Like

Getting Started with Measure Theory

Last year, I managed to successfully finish Metric Spaces, Basic Topology and other Analysis topics. Starting from the next semester I’ll be learning more pure mathematical topics, like Functional Analysis, Combinatorics and more. The plan is to lead myself to Combinatorics by majoring Functional Analysis and Topology. But before all those, I’ll be studying measure theory and probability this July – August. Probability…

Claim for a Prime Number Formula

Dr. SMRH Moosavi has claimed that he had derived a general formula for finding the $ n$ -th prime number. More details can be found here at PrimeNumbersFormula.com and a brief discussion here at Math.SE titled  “Formula for the nth prime number: discovered?” SOME MORE EXCERPTS ARE HERE:

The ‘new’ largest known Prime Number

Great Internet Mersenne Prime Search (GIMPS) group has reported an all new Mersenne Prime Number (a prime number of type $2^P-1$) which is, now officially the largest prime number ever discovered. This number is valued to a whopping $2^{74207281}-1$ and contains 22,338,618 digits. It is quoted as M747207281 and is almost 5 million digits longer than the previous record holding prime number…

The Lindemann Theory of Unimolecular Reactions

[ Also known as Lindemann-Hinshelwood mechanism.] It is easy to understand a bimolecular reaction on the basis of collision theory. When two molecules A and B collide, their relative kinetic energy exceeds the threshold energy with the result that the collision results in the breaking of comes and the formation of new bonds. But how can one account for a…

Chess Problems

In how many ways can two queens, two rooks, one white bishop, one black bishop, and a knight be placed on a standard $ 8 \times 8$ chessboard so that every position on the board is under attack by at least one piece? Note: The color of a bishop refers to the color of the square on which it sits,…

Examination Strategies : Tactics & Tips

Every student or graduate knows how hard the first experience of passing exams is. Preliminary preparation starves the nervous system and the physical condition of the human body, however, the exam itself is always a stressful situation, which requires a candidate a great manifestation of mental and physical abilities. Therefore, just the knowledge of a subject is not enough for…