All about the Light Absorption’s theory on the basis of Jablonski diagram.

According to the Grotthus – Draper Law of photo-chemical activation:

Only that light which is absorbed by a system, can bring a photo-chemical change.

However it is not true that all the kind of light(s) that are absorbed could bring a photo-chemical change. The absorption of light may result in a number of other phenomena as well.

  • For instance, the light absorbed may cause only a decrease in the intensity of the incident radiation. This event is governed by the Beer-Lambert Law.
  • Secondly, the light absorbed may be re-emitted almost instantaneously, within $10^{-8}$ seconds, in one or more steps. This phenomenon is well-known as fluorescence.
  • Sometimes the light absorbed is given out slowly and even long after the removal of the source of light. This phenomenon is known as phosphorescence.

The phenomena of fluorescence and phosphorescence are best explained with the help of the Jablonski Diagram.

What is Jablonski’s Diagram?
Jablonski Diagram

In order to understand Jablonski diagram, we first need to go through some basic facts. Many molecules have an even number of electrons and thus in the ground state, all the electrons are spin paired. The quantity $ \mathbf {2S+1} $ , where $ S $ is the total electronic spin, is known as the spin multiplicity of a state. When the spins are paired $ \uparrow \downarrow $ as shown in the figure, the upward orientation of the electron spin is cancelled by the downward orientation so that total electronic spin $ \mathbf {S=0} $ . That makes spin multiplicity of the state 1.

$ s_1= + \frac {1}{2}$ ; $ s_2= – \frac {1}{2}$ so that $ \mathbf{S}=s_1+s_2 =0$ .
Hence, $ \mathbf {2S+1}=1 $

Thus, the spin multiplicity of the molecule is 1. We express it by saying that the molecule is in the singlet ground state.

Spin Orientation on the absortion of a ligh photon

When by the absorption of a photon of a suitable energy $ h \nu $ , one of the paired electrons goes to a higher energy level (excited state), the spin orientation of the single electrons may be either parallel or anti-parallel. [see image]

• If spins are parallel, $ \mathbf {S=1} $ or $ \mathbf {2S+1=3} $ i.e., the spin multiplicity is 3. This is expressed by saying that the molecule is in the triplet excited state.
• If the spins are anti-parallel, then $ \mathbf{S=0} $ so that $ \mathbf {2S+1=1} $ which is the singlet excited state, as already discussed.

See, since the electron can jump to any of the higher electronic states depending upon the energy of the photon absorbed, we get a series of singlet excited states, $ {S_n} $  and a series of triplet excited state $ {T_n}$where $ n =1, 2, 3 \ldots $ . Thus $ S_1, , S_2, , S_3,  \ldots $ etc are respectively known as first singlet excited states, second singlet excited states and so on. Similarly, in $ T_1, , T_2,, ….. $, they are respectively known as first triplet excited state, second triplet excited state and so on.

Make sure, you are not confused in $ \mathbf{S}$ & $ S_n $.

  1. That’s really a highly detailed and nicely written article. Gaurav, you are a wonderful science blogger.

Comments are closed.

You May Also Like

Mathematical Logic – The basic introduction

What is Logic? If mathematics is regarded as a language, then logic is its grammar. In other words, logical precision has the same importance in mathematics as grammatical accuracy in a language. As linguistic grammar has sentences, statements— logic has them too. After we discuss about Sentence & Statements, we will proceed to further logical theories . Sentences & Statements…

Triangle Inequality

Triangle inequality has its name on a geometrical fact that the length of one side of a triangle can never be greater than the sum of the lengths of other two sides of the triangle. If $ a$ , $ b$ and $ c$ be the three sides of a triangle, then neither $ a$ can be greater than $…

CV Raman, Raman Effect on Raman Spectroscopy and Raman Scattering

Chandrasekhar Venkat Raman Chandrasekhar Venkat Raman, also known as Sir CV Raman, was a Physicist, Mathematician and a Nobel Laureate. Venkat (his first name) was a Tamil Brahmin and was the second of the eight children of his parents. He was born at Thiruvanaikaval, near Tiruchirappalli on 7th November 1888. He was the second of their eight children. His father was…

On Ramanujan’s Nested Radicals

Ramanujan (1887-1920) discovered some formulas on algebraic nested radicals. This article is based on one of those formulas. The main aim of this article is to discuss and derive them intuitively. Nested radicals have many applications in Number Theory as well as in Numerical Methods . The simple binomial theorem of degree 2 can be written as: $ {(x+a)}^2=x^2+2xa+a^2 \…

The Nobel Prize in Chemistry 2013

  Classical mechanics is considered to be just opposite to quantum physics in terms of theory and practical models. Classical mechanics, especially Newtonian Mechanics, and quantum mechanics are definitely two fundamental but equally different branches of physics having no significant connection to each other. These completely disjoint subjects were glued by the work of the trio of Martin Karplus, Michale…