If you are aware of elementary facts of geometry, then you might know that the area of a disk with radius $ R$ is $ \pi R^2$ .

The radius is actually the measure(length) of a line joining the center of disk and any point on the circumference of the disk or any other circular lamina. Radius for a disk is always same, irrespective of the location of point at circumference to which you are joining the center of disk. The area of disk is defined as the ‘measure of surface‘ surrounded by the round edge (circumference) of the disk.

area of disk basicThe area of a disk can be derived by breaking it into a number of identical parts of disk as units — calculating their areas and summing them up till disk is reformed. There are many ways to imagine a unit of disk. We can imagine the disk to be made up of several concentric very thin rings increasing in radius from zero to the radius of disc. In this method we can take an arbitrary ring, calculate its area and then in similar manner, induce areas of other rings — sum them till whole disk is obtained.

Circle sections
Rings and Sections

Mathematically, we can imagine a ring of with radius $ x$ and thickness $ dx$ , anywhere in the disk having the same center as disk, calculate its area and then sum up (integrate) it from $ x=0$ to $ x=R$ . Area of a thin ring is since $ \pi x dx$ . And after integrating we get, area of disk $ A=2 \int_0^R \pi x dx$ or $ A=\pi R^2$ .

There is another approach to achieve the area of a disk, A.

An inscribed Triangle
An inscribed Triangle

Imagine a disk is made up of a number equal sections or arcs. If there are $ n$ number of arcs then interior angle of an arc is exactly $ \frac{2\pi}{n}$ , since $ 2 \pi$ is the total angle at the center of disk and we are dividing this angle into $ n$ equal parts. If we join two ends of each sections –we can get $ n$ identical triangles in which an angle with vertex O is $ \frac{2 \pi}{n}$ . Now, if we can calculate the area of one such section, we can approach to the area of the disk intuitively. This approach is called the method of exhaustion.

Let, we draw two lines joining center O of the disk and points A & B at circumference. It is clear that OB and OA are the radius of the disk. We joined points A and B in order to form a triangle OAB. Now consider that the disk is made up of n-number of such triangles. We see that there is some area remaining outside the line AB and inside the circumference. If we had this triangle thinner, the remaining area must be lesser.

Area remaining after the Triangle
Area remaining after the Triangle

So, if we increase the number of triangles in disk —-we decrease the remaining areas. We can achieve to a point where we can accurately calculate the area of disk when there are infinitely many such triangles or in other words area of one such triangle is very small. So our plan is to find the area of one triangle —sum it up to n — make $ n$ tending to infinity to get the area of disk. It is clear that the sum of areas of all identical triangles like OAB must be either less than or equal to area of the disk. We can call triangles like OAB as inscribed triangles.

Now, if we draw a radius-line OT’, perpendicular to AB at point T and intersecting the circumference at point T’, we can easily draw another triangle OA’B’ as shown in figure. AOB and A’OB’ are inscribed and superscribed triangles of disk with same angle at vertex O. So, it is clear that the angle A’OB’ is equal to the angle AOB. Triangle A’OB’ is larger than the circular arc OAB and circular arc OAB is larger than the inscribed triangle AOB. Also, the sum of areas of triangles identical to OA’B’ is either greater than or equal to area of the disk.

area of disk area exceeding after superscibed scribed triangle

Let disk be divided into n- such inscribed and (thus) superscribed triangles. Since, total angle at point O is 360° or 2π —-the angles AOB and A’OB’ are of $ 2 \pi/n$ . And also since OT and OT’ are normals at chord AB and line A’B’ respectively, then they must divide the angles AOB and A’OB’ in two equal parts, each of $ \pi/n$ radians.

In triangle AOB, the area of triangle AOB is the sum of the area of triangles AOT and BOT. But since both are equal to each other in area, area of AOB must be twice of the area of triangle AOB (or BOT). Our next target is to find, the area of AOT in order to find the area of AOB.


From figure, area of $ \bigtriangleup{AOT}= \frac{1}{2} \times AT \times OT$ ….(1)

$ OA=R$

And, $ \angle{AOT}= \frac{\pi}{n}$ .

Thus, $ \frac{AT}{OA}=\sin {\frac{\pi}{n}}$

or, $ AT=OA \sin {(\pi/n)}$

or, $ AT=R \sin {(\pi/n)}$ …..(2)

Similarly, $ OT=R \cos {(\pi/n)}$

Therefore, area of $ \bigtriangleup {AOT}=\frac{1}{2} \times R \sin {(\pi/n)} \times R \cos {(\pi/n)}=\frac{1}{2} R^2 \sin{(\pi/n)} \cos {(\pi/n)}$

And thus, area of $ \bigtriangleup{AOB}=2 \times \frac{1}{2} R^2 \sin{(\pi/n)} \cos{(\pi/n)}=R^2 \sin{(\pi/n)} \cos{(\pi/n)}$

Since there are $ n$ such triangles: sum of areas of such triangles

$ S_1=n \times R^2 \sin{(\pi/n)} \cos{(\pi/n)}$ .

In triangle A’OB’, the total area of triangle A’OB’ is the sum of areas two identical triangles A’OT’ and B’OT’. Therefore, area of $ \bigtriangleup{A’OB’}=2 \times \text{area of} \bigtriangleup{A’OT’}$ .


And area of $ \bigtriangleup{A’OT’}=\frac{1}{2} \times AT’ \times OT’$ .

We have $ OT’=R$

and angle A’OT’=$ \frac{\pi}{n}$

Thus, A’T’/OT’= $ \tan{\frac{\pi}{n}}$

or, $ A’T’=OT’ \tan{\frac{\pi}{n}} =R \tan{\frac{\pi}{n}}$ .

Therefore, area of triangle A’OT’= $ \frac{1}{2} \times R \times R \tan{\frac{\pi}{n}}=\frac{1}{2} R^2 \tan{\frac{\pi}{n}}$ .

Hence, area of $ \bigtriangleup A’OB’=2 \times \frac{1}{2}R^2 \tan{\frac{\pi}{n}}$

As, there are $ n$ such triangles: sum of areas of those triangles $ S_2=n \times R^2 \tan{\frac{\pi}{n}}$ .

As it is clear that Sum of areas of triangles like $ \bigtriangleup AOB$ is an approximation for the area of disk from below, i.e., $ S_1 \le A$ when $ n \to \infty$ or,

$ \displaystyle{\lim_{n \to \infty}} n \times R^2 \sin{(\pi/n)} \cos{(\pi/n)} \le A$

$ \displaystyle{\lim_{n \to \infty}} n \times R^2 \frac{\pi}{n} \dfrac{\sin{(\pi/n)}}{\pi/n} \cos{(\pi/n)} \le A$

$ \pi R^2 \le A \ldots (I)$

Similarly, $ \displaystyle{\lim_{n\to \infty}} n \times R^2 \tan{\frac{\pi}{n}} \ge A$

or, $ \pi R^2 \ge A \ldots (II)$

From (I) and (II), we have $ A=\pi R^2$ .

So the area of a disk is $ \pi R^2$ .

Want to catch up with studies or work and access your important Windows Application and software as you travel? It’s possible with a cloud desktop from CloudDesktopOnline.com . Also, for more hosted Microsoft applications such as Exchange, SharePoint, Dynamics CRM, Project Server and more, try Apps4Rent.


Feel free to ask questions, send feedback and even point out mistakes. Great conversations start with just a single word. How to write better comments?
1 comment
Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

You May Also Like

Elementary Particle Physics

Particle physics is the study of Particles, from what everything is made of. In this section of physics we study the fundamental particles that make up all of matter, and their mutual interaction. Everything around us is made up of these particles, you may say, made up of fundamental building blocks of nature. So, what are these building blocks? In…

Meet the Math Blogger : Josh Young from Mathematical Mischief

Every mathematics student is in his own a special case — having his own qualities and snags. A math blogger is even more special.  He is more than just a mathematician or just a blogger. A math blogger is an entertainer… a magician, who devises techniques of making math more readable and even more interesting. There are hundreds of such…
Read More

8 big online communities a math major should join

Online communities are the groups of web savvy individuals who share communal interests. A community can be developed with just a single topic or by a bunch of philosophies. A better community binds its members through substantial debates. Mathematics is a very popular communal interest and there are hundreds of online communities formed in both Q&A and debate styles. Some…
spin orientation
Read More

Consequences of Light Absorption – The Jablonski Diagram

All about the Light Absorption’s theory on the basis of Jablonski diagram. According to the Grotthus – Draper Law of photo-chemical activation: Only that light which is absorbed by a system, can bring a photo-chemical change. However it is not true that all the kind of light(s) that are absorbed could bring a photo-chemical change. The absorption of light may result in…
Read More

Test your counting skills with Branifyd game for Android

Without basic operations of counting, like Addition, Subtraction, Multiplication and Division, it is not possible to imagine math problems. Counting is the base of human life. A student, whether he’s a math major or not, must be good at counting numbers.  The counting ability builds from experience and is definitely a time taking process.   Larger you have given time…