Weierstrass had drawn attention to the fact that there exist functions which are continuous for every value of $ x$ but do not possess a derivative for any value. We now consider the celebrated function given by Weierstrass to show this fact. It will be shown that if

$ f(x)= \displaystyle{\sum_{n=0}^{\infty} } b^n \cos (a^n \pi x) \ \ldots (1) \\ = \cos \pi x +b \cos a \pi x + b^2 \cos a^2 \pi x+ \ldots $

where $ a$ is an odd positive integer, $ 0 < b <1$ and $ ab > 1+\frac{3}{2} \pi$ , then the function $ f$ is continuous $ \forall x$ but not finitely derivable for any value of $ x$ .

G.H. Hardy improved this result to allow $ ab \ge 1$ .

We have $ |b^n \cos (a^n \pi x)| \le b^n$ and $ \sum b^n$ is convergent. Thus, by Wierstrass’s $ M$ -Test for uniform Convergence the series (1), is uniformly convergent in every interval. Hence $ f$ is continuous $ \forall x$ .
Again, we have

$ \dfrac{f(x+h)-f(x)}{h} = \displaystyle{\sum_{n=0}^{\infty}} b^n \dfrac{\cos [a^n \pi (x+h)]-\cos a^n \pi x}{h} \ \ \ldots (2)$

Let, now, $ m$ be any positive integer. Also let $ S_m$ denote the sum of the $ m$ terms and $ R_m$ , the remainder after $ m$ terms, of the series (2), so that
$ \displaystyle{\sum_{n=0}^{\infty}} b^n \dfrac{\cos [a^n \pi (x+h)]-\cos a^n \pi x}{h} = S_m+R_m $

By Lagrange’s mean value theorem, we have

$ \dfrac{|\cos {[a^n \pi (x+h)]} -\cos {a^n \pi x|}}{|h|}=|a^n \pi h \sin {a^n \pi(x+\theta h)}| \le a^n \pi |h|$

$ |S_m| \le \displaystyle{\sum_{n=0}^{m-1}} b^n a^n \pi = \pi \dfrac {a^m b^m -1}{ab-1} < \pi \dfrac {a^m b^m}{ab-1}$ .

We shall now consider $ R_m$ .
So far we have taken $ h$ as an arbitrary but we shall now choose it as follows:

We write $ a^m x=\alpha_m+\xi_m$ , where $ \alpha_m$ is the integer nearest to $ a^m x$ and $ -1/2 \le \xi_m < 1/2$ .
Therefore $ a^m(x+h) = \alpha_m+\xi_m+ha^m$ . We choose, $ h$ , so that $ \xi_m+ha^m=1$
i.e., $ h=\dfrac{1-\xi_m}{a^m}$ which $ \to 0 \ \text{as} \ m \to \infty$ for $ 0< h \le \dfrac{3}{2a^m} \ \ldots (3)$

Now, $ a^n \pi (x+h) = a^{n-m} a^m (x+h.) \\ \ =a^{n-m} \pi [(\alpha_m +\xi_m)+(1-\xi_m)] \\ \ =a^{n-m} \pi(\alpha_m+1)$


$ \cos[a^n \pi (x+h)] =cos [a^{n-m} (\alpha_m-1) \pi] =(-1)^{\alpha_{m+1}}$ .
$ \cos (a^n \pi x) = \cos [a^{n-m} (a^m \pi x)] \\ \ =\cos [a^{n-m} (\alpha_m+\xi_m) \pi] \\ \ =\cos a^{n-m} \alpha_m \pi \cos a^{n-m} \xi_m \pi – \sin a^{n-m} \alpha_m \pi \sin a^{n-m} \xi_m \pi \\ \ = (-1)^{\alpha_m} \cos a^{n-m} \xi_m \pi$

for $ a$ is an odd integer and $ \alpha_m$ is an integer.


$ R_m =\dfrac{(-1)^{\alpha_m}+1}{h} \displaystyle{\sum_{n=m}^{\infty}} b^n [2+\cos (a^{n-m} \xi_m \pi] \ \ldots (4)$

Now each term of series in (4) is greater than or equal to 0 and, in particular, the first term is positive, $ |R_m| > \dfrac{b^m}{|h|} > \dfrac{2a^m b^m}{3} \ \ldots (3)$

Thus $ \left| {\dfrac{f(x+h) -f(x)}{h}} \right| = |R_m +S_m| \\ \ \ge |R_m|-|S_m| > \left({\frac{2}{3} -\dfrac{\pi}{ab-1}} \right) a^mb^m$

As $ ab > 1+\frac{3}{2}\pi$

therefore $ \left({\frac{3}{2} -\dfrac{\pi}{ab-1}} \right) $ is positive.

Thus we see that when $ m \to \infty$ so that $ h \to 0$ , the expression $ \dfrac{f(x+h)-f(x)}{h}$ takes arbitrary large values. Hence, $ f'(x)$ does not exist or is at least not finite.

    1. Yes Sir! Hardy showed that the function of the above construction (Cosine Function) is non-derivable with the assumptions $ 0 < a <1$ and $ ab \ge 1$.

      Hardy G. H., Weierstrass’s nondifferentiable
      function, Transactions of the American Mathematical Society -17 – 1916,


Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

You May Also Like

Interesting Facts about Blood and Blood Cells

Like all humans have red colored blood, there are few organisms which have varying blood colors. Spiders and octopus have blue color blood, cockroaches have white/colorless blood, grasshopper, leeches, and some varieties of earthworm have green color blood and so on. Apart from these, there are more facts about the blood. In this article, few interesting facts about Blood and…

Free Online Algebra and Topology Books

This is a brief list of free e-books on Algebra, Topology and Related Mathematics. I hope it will be very helpful to all students and teachers searching for high quality content. If any link is broken, please email me at gaurav(at)gauravtiwari.org. Abstract Algebra OnLine by Prof. Beachy This site contains many of the definitions and theorems from the area of…

Solving Integral Equations – (1) Definitions and Types

If you have finished your course in Calculus and Differential Equations, you should head to your next milestone: the Integral Equations. This marathon series (planned to be of 6 or 8 parts) is dedicated to interactive learning of integral equations for the beginners —starting with just definitions and demos —and the pros— taking it to the heights of problem solving.…

The Collatz Conjecture : Unsolved but Useless

The Collatz Conjecture is one of the Unsolved problems in mathematics, especially in Number Theory. The Collatz Conjecture is also termed as 3n+1 conjecture, Ulam Conjecture, Kakutani’s Problem, Thwaites Conjecture, Hasse’s Algorithm, Syracuse Problem. Statement: Start with any positive integer. • Halve it, if it is even. Or • triple it and add 1, if it is odd. If you…

Real Sequences

Sequence of real numbers A sequence of real numbers (or a real sequence) is defined as a function $ f: \mathbb{N} \to \mathbb{R}$ , where $ \mathbb{N}$ is the set of natural numbers and $ \mathbb{R}$ is the set of real numbers. Thus, $ f(n)=r_n, \ n \in \mathbb{N}, \ r_n \in \mathbb{R}$ is a function which produces a sequence…

Getting Started with Measure Theory

Last year, I managed to successfully finish Metric Spaces, Basic Topology and other Analysis topics. Starting from the next semester I’ll be learning more pure mathematical topics, like Functional Analysis, Combinatorics and more. The plan is to lead myself to Combinatorics by majoring Functional Analysis and Topology. But before all those, I’ll be studying measure theory and probability this July – August. Probability…