# Definitions in Functional Analysis

## Linear Space or Vector Space over a field K

** Definition: **The linear space over a field K is a non-empty set along with a function $+ : X \times X \to X$ called

*linear/vector addition*(or just, ‘

*addition*‘) and another function $ \cdot : K \times X \to X$ called scalar multiplication, such that for all elements $x, y, z, \ldots$ in $X$ and $1, k, l, \ldots$ in $K$ :

$x+y = y+x$

$x+(y+z) = (x+y)+z$

there exists $0 \in X$ such that $x+0=x$

there exists $-x \in X$ such that $x+(-x)=0$

$k \cdot (x+y)=k \cdot x+k \cdot y$

$(k+l) \cdot x = k \cdot x + l \cdot x$

$(kl) \cdot x = k \cdot (l \cdot x)$

$1 \cdot x =x$

## Set-Set, Set Element Summation & Products

Let small Roman letters like $x, y, a, b, \ldots$ represent the elements & capital letters like $A, B, X, Y, \ldots$ represent sets, then

- $x+F = \{ x+y : y \in F \} $
- $ E+F= \{ x+y: x \in E, \, y \in F \}$
- $kE= \{ kx : x \in E \}$
- $E \times F = \{ (x,y) : x \in E, \, y \in F \}$

## Convex Subset of a linear space

A subset E of a linear space X over field K is said to be convex if $rx+(1-r)y \in E$ when $x,y \in E$ and $0<r<1$

## Convex Hull of a subset of linear space

For $E \subset X$, the smallest convex subset of linear space X containing $E$ is called the convex hull of $E$, denoted by **co(E)**.

co(E)=$ \{ \displaystyle{\sum_{i=1}^n} r_i x_i : x_i \in E; r_i \ge 0; \displaystyle{\sum_{i=1}^n} r_i=1\}$

## Subspace of a linear space

A non-empty subset $Y$ of linear space $X$ over K is said to be a subspace of $X$ over K if $kx+ly \in Y$, whenever $x,y \in Y$ & $k,l \in K$.

## Span of a subset of linear space

For a non-empty subset E of linear space X over K, the smallest subspace of X containing E is **span(E) **defined as

span(E) = $ \{ \displaystyle{\sum_{i=1}^n} k_i x_i : x_i \in E; k_i \in K \}$

This set is called the **span of E**.

**REMARK: **When **span(E)=X **, then we say that E spans X. Also, if **span(E)=X** and **E **is a linearly independent set, **E **is called the **Hamel Basis **(or **basis**) of linear space **X**.

## Linear Map

Let **X **and **Y** be two linear spaces over **K**. A linear map from X to Y is a function **F : X →Y** such that $F(k_1 x_1 + k_2 x_2) = k_1 F(x_1)+ k_2 F(x_2)$ for all $x_1, x_2 \in X, k_1, k_2 \in K$

The subspace $$ R(F):= \{ y \in Y : F(x)=y \, \mathbf{for \, some} \, x \in X \} $$ of **Y** is called the range space$ of **F**. While, the subspace $$ Z(F) := \{ x \in X : F(x) = 0 \}$$ of **X **is called the zero space$ of **F**.

**REMARK:**

- Whenever
**Z(F)=X,**we write**F=0**. **dim X= dim R + dim Z**

**Norm**

Let **X** be a linear space over the field **K **of real or complex numbers. A norm on **X **is the function $|| \, || : X \to R$ such that for all $x, y \in X$ and $k \in K$,

- $||x|| \ge 0$ with $||x||=0$ if and only if $x=0$
- $||x+y|| \le ||x||+||y||$
- $||kx|| = |k| ||x||$ where $|k|$ is the modulus of $k$.

### A normed space X is a linear space with a norm || || on it.

## Examples of Normed Space

A descriptive analysis of following normed spaces will be done in next article:

- Spaces $\mathbb{R}^n$ and $\mathbb{C}^n$
- Sequence spaces $l^p, l^\infty, c, c_0, c_{00}$ where $1\le p <\infty$
- p-integrable function spaces $L^p, L^\infty$ where $1\le p <\infty$

You can either start a new conversation or continue an existing one.Please don't use this comment form just to build backlinks. If your comment is not good enough and if in some ways you are trying to just build links — your comment will be deleted. Use this form to build a better and cleaner commenting ecosystem. Students are welcome to ask for help, freebies and more. Your email will not be published or used for any purposes.