Any integer greater than 1 is called a prime number if and only if its positive factors are 1 and the number p itself. The basic ideology involved in this post is flawed and the post has now been moved to Archives. Prime Generating Formulas We all know how hard it is to predict a formula for prime numbers!…

# Number Theory

Delving into the world of mathematics, this section focuses on number theory, offering insights, problems, and discussions for math enthusiasts and scholars.

Our reader Eswar Chellappa has sent his work on the solution of '3X+1' problem, also called Collatz Conjecture. He had been working on the proof of Collatz Conjecture off and on for almost ten years. The Collatz Conjecture can be quoted as follow: Let $\phi : \mathbb{N} \to \mathbb{N}^+$ be a function defined such that: $$\phi(x):=…

This is a continuation of the series of summer projects sponsored by department of science and technology, government of India. In this project work, I have worked to collect and expand what Ramanujan did with Nested Radicals and summarized all important facts into the one article. In the article, there are formulas, formulas and only…

The greatest number theorist in mathematical universe, Leonhard Euler had discovered some formulas and relations in number theory, which were based on practices and were correct to limited extent but still stun the mathematicians. The prime generating equation by Euler is a very specific binomial equation on prime numbers and yields more primes than any…

"Irrational numbers are those real numbers which are not rational numbers!" Def.1: Rational Number A rational number is a real number which can be expressed in the form of where $ a$ and $ b$ are both integers relatively prime to each other and $ b$ being non-zero.Following two statements are equivalent to the definition…

Ramanujan (1887-1920) discovered some formulas on algebraic nested radicals. This article is based on one of those formulas. The main aim of this article is to discuss and derive them intuitively. Nested radicals have many applications in Number Theory as well as in Numerical Methods . The simple binomial theorem of degree 2 can be…

Calendars have very decent stories and since this blog is based on mathematical approach, let we talk about the mathematical aspects of calendars. The Calendar We Use The international calendar we use is called Gregorian Calendar, said to be created by Pope Gregory XIII. Gregorian calendar was introduced in 80s of 16th century, to be…

If mathematics was a language, logic was the grammar, numbers should have been the alphabet. There are many types of numbers we use in mathematics, but at a broader aspect we may categorize them in two categories: 1. Countable Numbers 2. Uncountable Numbers The numbers which can be counted in nature are called Countable Numbers…

Before my college days I used to multiply this way. But as time passed, I learned new things. In a Hindi magazine named "Bhaskar Lakshya", I read an article in which a columnist ( I can't remember his name) suggested how to multiply in single line (row). That was a magic to me. I found doing multiplications…

Multiplication is probably the most important elementary operation in mathematics; even more important than usual addition. Every math-guy has its own style of multiplying numbers. But have you ever tried multiplicating by this way? Exercise: $ 88 \times 45$ =? Ans: as usual :- 3960 but I got this using a particular way: 88 …

Derivative of x squared As we know, the derivative of x squared, i.e., differentiation of $ x^2$ , with respect to $ x$, is $ 2x$. i.e., $ \dfrac{d}{dx} x^2 = 2x$ A Curious Case Suppose we write $ x^2$ as the sum of $ x$ 's written up $ x$ times. i.e., $ x^2…

Consider a sequence of functions as follows:- $ f_1 (x) = \sqrt {1+\sqrt {x} } $ $ f_2 (x) = \sqrt{1+ \sqrt {1+2 \sqrt {x} } } $ $ f_3 (x) = \sqrt {1+ \sqrt {1+2 \sqrt {1+3 \sqrt {x} } } } $ ......and so on to $ f_n (x) = \sqrt {1+\sqrt{1+2 \sqrt…