D'Alembert's Ratio Test of Convergence of Series

In this article, we will formulate the D' Alembert's Ratio Test on convergence of a series.

Let's start.

Statement of D'Alembert Ratio Test

A series $\sum u_{n}$ of positive terms is convergent if from and after some fixed term $\frac{u_{n+1}}{u_{n}}<r<1$, where r is a fixed number. The series is divergent if $\frac{u_{n+1}}{u_{n}}>1$ from and after some fixed term.

D'Alembert's Test is also known as the ratio test of convergence of a series.

Theorem

Let $\sum_{n=1}^{\infty} a_{n}$ be a series of real numbers in R, or a series of complex numbers in C.

Let the sequence a_{n} satisfy:

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=l
$$

- If $l>1$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.
- If $l<1$, then $\sum_{n=1}^{\infty} a_{n}$ converges absolutely.

Definitions for Generally Interested Readers

(Definition 1) An infinite series $\sum u_{n}$ i.e. $\mathbf{u}_{1}+\mathbf{u}_{2}+\mathbf{u}_{3}+\ldots+\mathbf{u}_{\mathbf{n}}$ is said to be convergent if S_{n}, the sum of its first n terms, tends to a finite limit S as n tends to infinity.

We call S the sum of the series, and write $S=\lim _{n \rightarrow \infty} S_{n}$.

Thus an infinite series $\sum u_{n}$ converges to a sum S , if for any given positive number ϵ, however small, there exists a positive integer n_{0} such that $\left|S_{n}-S\right|<\epsilon$ for all $n \geq n_{0}$.

(Definition 2)

If $S_{n} \rightarrow \pm \infty$ as $n \rightarrow \infty$, the series is said to be divergent.
Thus, $\sum u_{n}$ is said to be divergent if for every given positive number λ, however large, there exists a positive integer n_{0} such that $\left|S_{n}\right|>\lambda$ for all $n \geq n_{0}$.

(Definition 3)

If S_{n} does not tend to a finite limit, or to plus or minus infinity, the series is called oscillatory.

Proof \& Discussions on Ratio Test

Let a series be $\mathbf{u}_{1}+\mathbf{u}_{2}+\mathbf{u}_{3}+\ldots \ldots$. . We assume that the above inequalities are true.

From the first part of the statement:

$$
\frac{u_{2}}{u_{1}}<r, \frac{u_{3}}{u_{2}}<r \ldots \ldots . . \text { where } \mathrm{r}<1 .
$$

Therefore

$$
u_{1}+u_{2}+u_{3}+\ldots
$$

$$
\begin{gathered}
=u_{1}\left(1+\frac{u_{2}}{u_{1}}+\frac{u_{3}}{u_{1}}+\ldots\right) \\
=u_{1}\left(1+\frac{u_{2}}{u_{1}}+\frac{u_{3}}{u_{2}} \times \frac{u_{2}}{u_{1}}+\ldots\right) \\
<u_{1}\left(1+r+r^{2}+\ldots .\right)
\end{gathered}
$$

Therefore, $\sum u_{n}<u_{1}\left(1+r+r^{2}+\ldots ..\right)$
or, $\sum u_{n}<\lim _{n \rightarrow \infty} \frac{u_{1}\left(1-r^{n}\right)}{1-r}$

Since $r<1$, therefore as $n \rightarrow \infty, r^{n} \rightarrow 0$
therefore $\sum u_{n}<\frac{u_{1}}{1-r}=\mathrm{k}$ say, where k is a fixed number.
Therefore $\sum u_{n}$ is convergent.
Since, $\frac{u_{n+1}}{u_{n}}>1$ then, $\frac{u_{2}}{u_{1}}>1, \frac{u_{3}}{u_{2}}>1$
Therefore
$u_{2}>u_{1}$
$u_{3}>u_{2}>u_{1}$
$u_{4}>u_{3}>u_{2}>u_{1}$
and so on.

Therefore $\sum u_{n}=u_{1}+u_{2}+u_{3}+\ldots+u_{n}>n u_{1}$.

By taking n sufficiently large, we see that $n u_{1}$ can be made greater than any fixed quantity.

Hence the series is divergent.

Academic Proofs

From the statement of the theorem, it is necessary that $\forall n: a_{n} \neq 0$;
otherwise $\frac{a_{n+1}}{a_{n}}$ is not defined.

Here, $\frac{a_{n+1}}{a_{n}}$ denotes either the absolute value of $\frac{a_{n+1}}{a_{n}}$, or the complex modulus of $\frac{a_{n+1}}{a_{n}}$.

Absolute Convergence

Suppose $l<1$.

Let us take $\epsilon>0$ such that $l+\epsilon<1$.

Then:
$\exists N: \forall n>N: \frac{a_{n}}{a_{n-1}}<l+\epsilon$

Thus: $\left(a_{n}\right)$
$=\left(\frac{a_{n}}{a_{n-1}} \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_{N+2}}{a_{N+1}} a_{N+1}\right)$
$<\left(l+\epsilon^{n-N-1} a_{N+1}\right)$

By Sum of Infinite Geometric Progression, $\sum_{n=1}^{\infty} l+\epsilon^{n}$ converges.

So by the corollary to the comparison test, it follows that $\sum_{n=1}^{\infty} a_{n}$ converges absolutely too.

Divergence

Suppose $l>1$.
Let us take $\epsilon>0$ small enough that $l-\epsilon>1$.
Then, for a sufficiently large N, we have:
$\left(a_{n}\right)=$
$\left(\frac{a_{n}}{a_{n-1}} \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_{N+2}}{a_{N+1}} a_{N+1}\right)$
$>\left(l-\epsilon^{n-N+1} a_{N+1}\right)$

But $l-\epsilon^{n-N+1} a_{N+1} \rightarrow \infty$ as $n \rightarrow \infty$.

So $\sum_{n=1}^{\infty} a_{n}$ diverges.

Comments

- When $\frac{u_{n+1}}{u_{n}}=1$, the test fails.
- Another form of the test- The series $\sum u_{n}$ of positive terms is convergent if $\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}>1$ and divergent if $\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}<1$.
- One should use this form of the test in the practical applications.

Suggested Reading

Analysis I: Third Edition (Texts and Readings in Mathematics)
Hardcover Book

Tao, Terence (Author)

English (Publication Language)

View on Amazon

An Example

Verify whether the infinite series $\frac{x}{1.2}+\frac{x^{2}}{2.3}+\frac{x^{3}}{3.4}+\ldots$ is convergent or divergent.

Solution

We have $u_{n+1}=\frac{x^{n+1}}{(n+1)(n+2)}$ and $u_{n}=\frac{x^{n}}{n(n+1)}$

Therefore $\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=\lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right) \frac{1}{x}=\frac{1}{x}$

Hence, when $1 / x>1$, i.e., $x<1$, the series is convergent and when $x>1$ the series is divergent.

When $\mathrm{x}=1$, $u_{n}=\frac{1}{n(n+1)}=\frac{1}{n^{2}}(1+1 / n)^{-1}$
or, $u_{n}=\frac{1}{n^{2}}\left(1-\frac{1}{n}+\frac{1}{n^{2}}-\ldots.\right)$
Take $\frac{1}{n^{2}}=v_{n}$ Now $\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=1$, a non-zero finite quantity.
But $\sum v_{n}=\sum \frac{1}{n^{2}}$ is convergent.
Hence, $\sum u_{n}$ is also convergent.

Last update on 2022-12-17 using Amazon Product Advertising API.

