D'Alembert's Ratio Test of Convergence of Series

In this article, we will formulate the D' Alembert's Ratio Test on convergence of a series.

Let's start.

Statement of D'Alembert Ratio Test

A series $\sum u_n$ of positive terms is convergent if from and after some fixed term $rac{u_{n+1}}{u_n} < r < 1$, where r is a fixed number. The series is divergent if $rac{u_{n+1}}{u_n} > 1$ from and after some fixed term.

D'Alembert's Test is also known as the ratio test of convergence of a series.

Theorem
Let
$$\sum_{n=1}^{\infty} a_n$$
 be a series of real numbers in R , or a series of complex numbers in C .
Let the sequence a_n satisfy:
 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l$
If $l > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.
If $l < 1$, then $\sum_{n=1}^{\infty} a_n$ converges absolutely.

Definitions for Generally Interested Readers

(Definition 1) An infinite series $\sum u_n$ i.e. $\mathbf{u_1} + \mathbf{u_2} + \mathbf{u_3} + \ldots + \mathbf{u_n}$ is said to be <u>convergent</u> if S_n , the sum of its first n terms, tends to a finite limit S as n tends to infinity.

We call S the sum of the series, and write $S = \displaystyle \lim_{n o \infty} S_n$.

Thus an infinite series $\sum u_n$ converges to a sum S, if for any given positive number ϵ , however small, there exists a positive integer n_0 such that $|S_n - S| < \epsilon$ for all $n \ge n_0$.

(Definition 2)

If $S_n \to \pm \infty$ as $n \to \infty$, the series is said to be **divergent**. Thus, $\sum u_n$ is said to be divergent if for every given positive number λ , however large, there exists a positive integer n_0 such that $|S_n| > \lambda$ for all $n \ge n_0$.

(Definition 3)

If S_n does not tend to a finite limit, or to plus or minus infinity, the series is called **oscillatory**.

Proof & Discussions on Ratio Test

Let a series be $\mathbf{u_1} + \mathbf{u_2} + \mathbf{u_3} + \dots$ We assume that the above <u>inequalities</u> are true.

From the first part of the statement:

$$rac{u_2}{u_1} < r$$
 , $rac{u_3}{u_2} < r$ where r <1.

Therefore

$$u_1+u_2+u_3+\ldots$$

-- --

$$=u_1(1+rac{u_2}{u_1}+rac{u_3}{u_1}+\dots)$$

$$= u_1(1+rac{u_2}{u_1}+rac{u_3}{u_2} imesrac{u_2}{u_1}+\dots)$$

$$< u_1(1+r+r^2+\dots)$$

Therefore,
$$\sum u_n < u_1(1+r+r^2+\dots)$$
 or, $\sum u_n < \displaystyle{\lim_{n o \infty}} rac{u_1(1-r^n)}{1-r}$

Since r<1, therefore as $n \to \infty, \ r^n \to 0$ therefore $\sum u_n < \frac{u_1}{1-r}$ =k say, where k is a fixed number. Therefore $\sum u_n$ is convergent.

Since,
$$\displaystyle rac{u_{n+1}}{u_n} > 1$$
 then, $\displaystyle rac{u_2}{u_1} > 1$, $\displaystyle rac{u_3}{u_2} > 1$

Therefore

 $u_2 > u_1$

 $u_3>u_2>u_1$

 $u_4>u_3>u_2>u_1$

and so on.

Therefore
$$\sum u_n = u_1 + u_2 + u_3 + \ldots + u_n$$
 > nu_1 .

By taking n sufficiently large, we see that nu_1 can be made greater than any fixed quantity.

Hence the series is divergent.

Academic ProofsFrom the statement of the theorem, it is necessary that
$$\forall n : a_n \neq 0$$
;
otherwise $\frac{a_{n+1}}{a_n}$ is not defined.Here, $\frac{a_{n+1}}{a_n}$ denotes either the absolute value of $\frac{a_{n+1}}{a_n}$, or the complex
modulus of $\frac{a_{n+1}}{a_n}$.Absolute ConvergenceSuppose $l < 1$.Let us take $\epsilon > 0$ such that $l + \epsilon < 1$.Then:
 $\exists N : \forall n > N : \frac{a_n}{a_{n-1}} < l + \epsilon$ Thus: (a_n) $= \left(\frac{a_n}{a_{n-1}} \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_{N+2}}{a_{N+1}} a_{N+1}\right)$
 $< (l + \epsilon^{n-N-1}a_{N+1})$ By Sum of Infinite Geometric Progression, $\sum_{n=1}^{\infty} l + \epsilon^n$ converges.

Comments

- When $\displaystyle rac{u_{n+1}}{u_n} = 1$, the test fails.
- Another form of the test– The series $\sum_{n \to \infty} u_n$ of positive terms is convergent if $\lim_{n \to \infty} \frac{u_n}{u_{n+1}}$ >1 and divergent if $\lim_{n \to \infty} \frac{u_n}{u_{n+1}}$ <1.
- One should use this form of the test in the practical applications.

Suggested Reading

An Example

Verify whether the infinite series $\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \dots$ is convergent or divergent.

Solution

We have
$$u_{n+1}=rac{x^{n+1}}{(n+1)(n+2)}$$
 and $u_n=rac{x^n}{n(n+1)}$

Therefore
$$\displaystyle{\lim_{n o \infty}} rac{u_n}{u_{n+1}} = \displaystyle{\lim_{n o \infty}} (1+rac{2}{n}) rac{1}{x} = rac{1}{x}$$

Hence, when 1/x > 1, i.e., x < 1, the series is convergent and when x > 1 the series is divergent.

When x=1,
$$u_n=rac{1}{n(n+1)}=rac{1}{n^2}(1+1/n)^{-1}$$
 or, $u_n=rac{1}{n^2}(1-rac{1}{n}+rac{1}{n^2}-\ldots)$

Take $rac{1}{n^2}=v_n$ Now $\lim_{n o\infty}rac{u_n}{v_n}=1$, a non-zero finite quantity.

But $\sum v_n = \sum rac{1}{n^2}$ is convergent. Hence, $\sum u_n$ is also convergent.

Last update on 2022-12-17 using Amazon Product Advertising API.