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Abstract

Real sequences form the backbone of real analysis and much of advanced calculus. This
study note covers everything you need to know about real sequences, from basic definitions
to advanced theorems like Bolzano-Weierstrass and Cauchy’s convergence criteria. Whether
you’re preparing for a real analysis course or brushing up on fundamentals, these notes will
give you a solid foundation.
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1 What is a Real Sequence?

A sequence of real numbers (or a real sequence) is defined as a function f : N → R, where N
is the set of natural numbers and R is the set of real numbers. In simpler terms, it’s an ordered
list of real numbers indexed by natural numbers.

The function f(n) = rn for n ∈ N and rn ∈ R produces a sequence of real numbers. We
typically write sequences using angle brackets or curly braces: ⟨fn⟩ or {fn}. The subscript
notation distinguishes a sequence from a regular function, which is helpful when working with
multiple mathematical objects.

When I write ⟨fn⟩, I mean
⟨f1, f2, f3, . . . , fn, . . .⟩

a sequence with infinitely many terms. Since every fn is a real number, we call this a sequence
of real numbers or simply a real sequence.

1.1 Examples of Real Sequences

Let me walk through several examples that illustrate different ways sequences can be con-
structed.

Example 1.1 (The Harmonic Sequence). If f(x) = 1
x for all x ∈ R is a real-valued function,

then f(n) = 1
n for all n ∈ N gives us a real sequence. Substituting consecutive natural numbers:

� For n = 1: f(1) = 1

� For n = 2: f(2) = 1
2

� For n = 3: f(3) = 1
3

� And so on. . .

This sequence is written as 〈
1

n

〉
=

〈
1,

1

2
,
1

3
,
1

4
, . . .

〉
This is the famous harmonic sequence, and its terms approach zero as n increases.

Example 1.2 (Alternating Sequence). The sequence ⟨(−1)n⟩ produces

⟨−1, 1,−1, 1,−1, 1, . . .⟩

This sequence oscillates between −1 and 1 forever. It never settles down to a single value, which
makes it particularly interesting when studying convergence.

Example 1.3 (Arithmetic Sequence). The sequence ⟨−3n⟩ gives us

⟨−3,−6,−9,−12, . . .⟩

Each term decreases by 3. This is an arithmetic sequence with common difference −3.

Example 1.4 (Fibonacci Sequence (Recurrence Relation)). Sequences can also be defined using
recurrence relations with initial conditions. If we define fn = fn−1 + fn−2 for n ≥ 2 with
f0 = f1 = 1, we get:

� f1 = 1 (given)

� f2 = f1 + f0 = 1 + 1 = 2
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� f3 = f2 + f1 = 2 + 1 = 3

� f4 = f3 + f2 = 3 + 2 = 5

� f5 = f4 + f3 = 5 + 3 = 8

This produces the Fibonacci sequence:

⟨1, 1, 2, 3, 5, 8, 13, 21, 34, . . .⟩

The Fibonacci sequence appears everywhere in mathematics, from number theory to the golden
ratio, and shows how simple rules can generate complex and beautiful patterns.

Example 1.5 (Geometric Sequence). The sequence ⟨2n⟩ gives us

⟨2, 4, 8, 16, 32, 64, . . .⟩

Each term is twice the previous one. This is a geometric sequence with common ratio 2.

Example 1.6 (Constant Sequence). The sequence ⟨c⟩ where c is any fixed real number gives us

⟨c, c, c, c, . . .⟩

Every term equals c. This is the simplest possible sequence and trivially converges to c.

2 Range Set of a Sequence

The range set of a sequence is the set of all distinct elements that appear in the sequence.
This is different from the sequence itself because sequences are ordered and can have repeated
elements, while sets are unordered collections of unique elements.

Consider these examples:

� The range set of
〈
1
n

〉
is

{
1
n : n ∈ N

}
=

{
1, 12 ,

1
3 ,

1
4 , . . .

}
, which is an infinite set.

� The range set of ⟨(−1)n⟩ is {−1, 1}, a finite set with only two elements despite the sequence
having infinitely many terms.

� The range set of a constant sequence ⟨c⟩ is {c}, a set with just one element.

Important: The range set of a sequence may be either infinite or finite, but a sequence
itself always has infinitely many terms (counting repetitions).

3 Subsequences

A subsequence of a sequence is another sequence formed by selecting terms from the original
sequence while preserving their relative order. You can skip terms, but you can’t rearrange
them.

Formally, if ⟨Sn⟩ is a sequence and n1 < n2 < n3 < . . . is a strictly increasing sequence of
natural numbers, then ⟨Snk

⟩ = ⟨Sn1 , Sn2 , Sn3 , . . .⟩ is a subsequence of ⟨Sn⟩.
Examples:

� ⟨1, 3, 5, 7, . . .⟩ is a subsequence of ⟨1, 2, 3, 4, 5, . . .⟩ (selecting odd-indexed terms).

� ⟨1, 5, 13, 21, . . .⟩ is a subsequence of the Fibonacci sequence ⟨1, 1, 2, 3, 5, 8, 13, 21, . . .⟩.

� ⟨1, 1, 1, 1, . . .⟩ is a subsequence of ⟨−1, 1,−1, 1, . . .⟩ (selecting only the positive terms).

Since a subsequence is itself a sequence, it inherits all the properties of sequences. This fact
becomes crucial when studying convergence, because if a sequence converges, all its subsequences
must converge to the same limit.
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4 Equality of Sequences

Two sequences ⟨Sn⟩ and ⟨Tn⟩ are equal if and only if Sn = Tn for all n ∈ N. Every corresponding
term must match exactly.

For example, the sequences
〈
n+1
n

〉
and

〈
1 + 1

n

〉
are equal because for any natural number n,

we have
n+ 1

n
=

n

n
+

1

n
= 1 +

1

n

Important: The sequences ⟨−1, 1,−1, 1, . . .⟩ and ⟨1,−1, 1,−1, . . .⟩ are not equal, even
though they have the same range set {−1, 1}. Order matters in sequences.

5 Algebra of Sequences

Sequences can be combined using arithmetic operations, just like numbers. Let ⟨Sn⟩ and ⟨Tn⟩
be two sequences. We define:

� Sum: ⟨Sn + Tn⟩ is the sequence whose n-th term is Sn + Tn

� Difference: ⟨Sn − Tn⟩ is the sequence whose n-th term is Sn − Tn

� Product: ⟨Sn · Tn⟩ is the sequence whose n-th term is Sn · Tn

� Quotient:
〈
Sn
Tn

〉
is the sequence whose n-th term is Sn

Tn
(provided Tn ̸= 0 for all n)

For example, if ⟨Sn⟩ = ⟨0, 1, 2, 3, . . .⟩ and ⟨Tn⟩ = ⟨1, 7, 17, 27, . . .⟩, then their sum is ⟨1, 8, 19, 30, . . .⟩.
Reciprocal Sequence: If Sn ̸= 0 for all n, the sequence

〈
1
Sn

〉
is called the reciprocal of

the sequence ⟨Sn⟩. For example, the reciprocal of ⟨1,−2, 3,−4, . . .⟩ is
〈
1,−1

2 ,
1
3 ,−

1
4 , . . .

〉
.

Scalar Multiple: If c ∈ R, the sequence ⟨cSn⟩ is called the scalar multiple of ⟨Sn⟩. This
multiplies every term by the same constant c.

6 Bounded Sequences

Understanding boundedness is essential for working with sequences. A sequence can be bounded
above, bounded below, both, or neither.

Definition 6.1 (Bounded Above). A sequence ⟨Sn⟩ is bounded above if there exists a real
number M such that Sn ≤ M for all n ∈ N. The number M is called an upper bound of the
sequence.

Definition 6.2 (Bounded Below). A sequence ⟨Sn⟩ is bounded below if there exists a real
number m such that Sn ≥ m for all n ∈ N. The number m is called a lower bound of the
sequence.

Definition 6.3 (Bounded). A sequence is bounded if it is both bounded above and bounded
below. Equivalently, there exist real numbers m and M such that

m ≤ Sn ≤ M for all n ∈ N

This can also be written as |Sn| ≤ K for some positive constant K and all n.

Supremum and Infimum:

� The least upper bound (supremum) of a sequence ⟨Sn⟩ is the smallest real number that
is still an upper bound for the sequence, denoted supSn.
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� The greatest lower bound (infimum) is the largest real number that is still a lower bound,
denoted inf Sn.

Examples:

� The sequence ⟨n3⟩ = ⟨1, 8, 27, 64, . . .⟩ is bounded below by 1 (in fact, by 0) but is not
bounded above. It grows without limit.

� The sequence
〈
1
n

〉
=

〈
1, 12 ,

1
3 , . . .

〉
is bounded. It’s bounded above by 1 and bounded below

by 0 (though 0 is never actually attained).

� The sequence ⟨(−1)n⟩ = ⟨−1, 1,−1, 1, . . .⟩ is bounded. Every term is between −1 and 1,
inclusive.

� The sequence ⟨(−1)n · n⟩ = ⟨−1, 2,−3, 4, . . .⟩ is unbounded. It oscillates but grows in
magnitude without limit.

Important: If the range set of a sequence is finite, the sequence is always bounded. This
follows directly from the fact that any finite set of real numbers has both a maximum and
minimum element.

7 Convergent Sequences

Convergence is arguably the most important concept in sequence theory. A sequence converges
if its terms get arbitrarily close to some fixed value and stay close.

Definition 7.1 (Convergence). A sequence ⟨Sn⟩ converges to a real number l if for every
ϵ > 0, there exists a positive integer m (depending on ϵ) such that

|Sn − l| < ϵ for all n ≥ m

The number l is called the limit of the sequence, and we write limn→∞ Sn = l or simply
limSn = l. The sequence itself is called a convergent sequence.

In plain terms: no matter how small a positive tolerance ϵ you choose, eventually (after
some point m) all terms of the sequence will be within ϵ of the limit l.

7.1 Fundamental Theorems on Convergent Sequences

Theorem 7.2 (Uniqueness). Every convergent sequence has exactly one limit. A sequence
cannot converge to two different values.

Theorem 7.3 (Non-negative Limits). If ⟨Sn⟩ is a sequence of non-negative numbers that con-
verges, then limSn ≥ 0. The limit of non-negative terms cannot be negative.

Theorem 7.4 (Boundedness). Every convergent sequence is bounded. However, the converse
is false. A sequence can be bounded without converging (for example, ⟨(−1)n⟩ is bounded but
doesn’t converge).

Theorem 7.5 (Arithmetic Operations). If limSn = l and limTn = l′, then:

� lim(Sn + Tn) = l + l′

� lim(Sn − Tn) = l − l′

� lim(Sn · Tn) = l · l′

� lim Sn
Tn

= l
l′ (provided l′ ̸= 0 and Tn ̸= 0 for all n)
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Theorem 7.6 (Order Preservation). If Sn ≤ Tn for all n, and both sequences converge, then
limSn ≤ limTn.

Theorem 7.7 (Absolute Value). If limSn = l, then lim |Sn| = |l|. Taking absolute values
preserves convergence.

Theorem 7.8 (Squeeze Theorem). If Sn ≤ Tn ≤ Un for all n, and limSn = l = limUn, then
limTn = l. This is also called the Sandwich Theorem or Pinching Theorem.

Theorem 7.9 (Cauchy’s First Theorem on Limits). If limSn = l, then

lim
n→∞

S1 + S2 + . . .+ Sn

n
= l

The arithmetic mean of the first n terms converges to the same limit as the sequence.

Theorem 7.10 (Cauchy’s Second Theorem on Limits). If ⟨Sn⟩ is a sequence of positive numbers
with limSn = l, then

lim
n→∞

(S1 · S2 · . . . · Sn)
1/n = l

The geometric mean of the first n terms converges to the same limit.

Theorem 7.11 (Ratio Test for Sequences). If ⟨Sn⟩ is a sequence of positive numbers such that
lim Sn+1

Sn
= l (where l > 0), then

lim
n→∞

S1/n
n = l

Theorem 7.12 (Cesaro’s Theorem). If limSn = l and limTn = l′, then

lim
n→∞

S1Tn + S2Tn−1 + . . .+ SnT1

n
= l · l′

7.2 Subsequence Theorem

Theorem 7.13. If a sequence ⟨Sn⟩ converges to l, then every subsequence of ⟨Sn⟩ also converges
to l.

The contrapositive of this theorem is often more useful in practice: if two different subse-
quences converge to different limits, or if any subsequence diverges, then the original sequence
does not converge.

8 Divergent Sequences

A sequence ⟨Sn⟩ is divergent if it tends to infinity. Specifically:

� We write limn→∞ Sn = +∞ if for every real number M > 0, there exists a positive integer
N such that Sn > M for all n ≥ N . The sequence grows without bound.

� We write limn→∞ Sn = −∞ if for every real number M < 0, there exists a positive integer
N such that Sn < M for all n ≥ N . The sequence decreases without bound.

Examples of divergent sequences:

� ⟨n⟩ = ⟨1, 2, 3, 4, . . .⟩ diverges to +∞

� ⟨−n2⟩ = ⟨−1,−4,−9,−16, . . .⟩ diverges to −∞

� ⟨2n⟩ = ⟨2, 4, 8, 16, . . .⟩ diverges to +∞
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9 Oscillatory Sequences

Not every sequence converges or diverges to infinity. Some sequences oscillate, meaning they
keep bouncing around without settling down or shooting off to infinity.

Finite Oscillation: A sequence oscillates finitely if:

1. It is bounded

2. It neither converges nor diverges to infinity

Example: ⟨(−1)n⟩ = ⟨−1, 1,−1, 1, . . .⟩ oscillates finitely between −1 and 1.
Infinite Oscillation: A sequence oscillates infinitely if:

1. It is unbounded

2. It neither converges nor diverges to a single infinity (neither +∞ nor −∞)

Example: ⟨(−1)n ·n⟩ = ⟨−1, 2,−3, 4,−5, . . .⟩ oscillates infinitely. It grows in magnitude but
keeps alternating signs.

A sequence is called non-convergent if it’s either divergent or oscillatory.

10 Limit Points of a Sequence

A real number P is a limit point (or accumulation point, or cluster point) of a sequence ⟨Sn⟩
if every neighborhood of P contains infinitely many terms of the sequence.

Formally: P is a limit point of ⟨Sn⟩ if for every ϵ > 0, the interval (P − ϵ, P + ϵ) contains
Sn for infinitely many values of n.

This is different from the limit of a sequence. A convergent sequence has exactly one limit
point (its limit), but a non-convergent sequence may have multiple limit points, exactly one, or
none.

Example: The sequence ⟨(−1)n⟩ has two limit points: −1 and 1.

10.1 Bolzano-Weierstrass Theorem

Theorem 10.1 (Bolzano-Weierstrass). Every bounded sequence of real numbers has at least
one limit point. Equivalently: every bounded sequence has a convergent subsequence.

Important Remarks:

� An unbounded sequence may or may not have limit points.

� The greatest limit point of a bounded sequence is called the limit superior (limsup),
denoted lim supSn or limSn.

� The smallest limit point is called the limit inferior (liminf), denoted lim inf Sn or limSn.

� For any bounded sequence, lim supSn ≥ lim inf Sn.

� A bounded sequence converges if and only if lim supSn = lim inf Sn, and in that case, the
common value is the limit.
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11 Monotonic Sequences

A sequence is monotonic if it consistently moves in one direction, never reversing course.

Definition 11.1 (Monotonic Sequence). A sequence ⟨Sn⟩ is monotonic if either:

� Sn+1 ≥ Sn for all n ∈ N (monotonically increasing or non-decreasing), or

� Sn+1 ≤ Sn for all n ∈ N (monotonically decreasing or non-increasing)

If the inequalities are strict (> or <), we say the sequence is strictly increasing or strictly
decreasing.

Examples:

�

〈
1
n

〉
=

〈
1, 12 ,

1
3 , . . .

〉
is strictly decreasing

� ⟨n2⟩ = ⟨1, 4, 9, 16, . . .⟩ is strictly increasing

�

〈
1− 1

n

〉
=

〈
0, 12 ,

2
3 ,

3
4 , . . .

〉
is strictly increasing

� ⟨c⟩ (constant sequence) is both non-decreasing and non-increasing

11.1 Monotone Convergence Theorem

Theorem 11.2. A monotonically increasing sequence that is bounded above converges to its
supremum. If it’s not bounded above, it diverges to +∞.

Theorem 11.3. A monotonically decreasing sequence that is bounded below converges to its
infimum. If it’s not bounded below, it diverges to −∞.

Corollary 11.4. A monotonic sequence converges if and only if it is bounded.

12 Cauchy Sequences

Cauchy sequences provide an alternative characterization of convergence that doesn’t require
knowing the limit in advance.

Definition 12.1 (Cauchy Sequence). A sequence ⟨Sn⟩ is a Cauchy sequence if for every
ϵ > 0, there exists a positive integer N such that

|Sn − Sm| < ϵ for all n,m ≥ N

In other words, the terms of a Cauchy sequence eventually get arbitrarily close to each other.

12.1 Properties of Cauchy Sequences

Theorem 12.2. Every Cauchy sequence is bounded.

Theorem 12.3 (Cauchy’s General Principle of Convergence). A sequence of real numbers con-
verges if and only if it is a Cauchy sequence.

This theorem is profound. It says that in the real numbers, being a Cauchy sequence
is equivalent to being convergent. This is actually a defining property of the real numbers
(completeness).
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13 Important Limits to Remember

These standard limits appear frequently and are worth memorizing:

1. limn→∞
1
np = 0 for any p > 0

2. limn→∞ n
√
a = 1 for any a > 0

3. limn→∞ n
√
n = 1

4. limn→∞
nk

an = 0 for any k and a > 1 (exponentials dominate polynomials)

5. limn→∞
an

n! = 0 for any a (factorials dominate exponentials)

6. limn→∞
(
1 + 1

n

)n
= e ≈ 2.71828

7. limn→∞
(
1 + x

n

)n
= ex for any real x

8. limn→∞
lnn
n = 0

14 Connection to Series

Sequences and series are intimately connected. A series is simply the sequence of partial sums
of another sequence.

Given a sequence ⟨an⟩, the associated series is

∞∑
n=1

an = a1 + a2 + a3 + . . .

and the sequence of partial sums is ⟨Sn⟩ where

Sn = a1 + a2 + . . .+ an =
n∑

k=1

ak

The series converges if and only if the sequence of partial sums converges.

15 Practical Tips for Studying Sequences

� Start with concrete examples. Before trying to prove abstract theorems, compute the
first 10 terms of various sequences.

� Master the epsilon-N definition. The formal definition of convergence is the key to
everything.

� Know the standard limits. Most sequence problems reduce to combining standard
results using the algebraic limit theorems.

� Check boundedness and monotonicity. These are often the fastest routes to deter-
mining convergence.

� Use the Squeeze Theorem liberally. When direct computation is hard, try to bound
your sequence.

� Consider subsequences. If you can find two subsequences converging to different limits,
the original sequence diverges.
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16 Frequently Asked Questions

What is the difference between a sequence and a series?

A sequence is an ordered list of numbers, while a series is the sum of the terms of a sequence.
Given a sequence ⟨a1, a2, a3, . . .⟩, the associated series is a1+a2+a3+ . . . When we ask whether
a series converges, we’re really asking whether the sequence of partial sums converges.

Can a sequence have more than one limit?

No. The Uniqueness Theorem states that if a sequence converges, its limit is unique. A sequence
cannot converge to two different values. However, a non-convergent sequence can have multiple
limit points, which is different from having multiple limits.

What is the difference between a limit and a limit point?

A limit is the value that a convergent sequence approaches. A limit point is any value that
has infinitely many terms of the sequence arbitrarily close to it. A convergent sequence has
exactly one limit point (its limit), but a non-convergent bounded sequence may have multiple
limit points.

Is every bounded sequence convergent?

No. Boundedness is necessary but not sufficient for convergence. The sequence ⟨(−1)n⟩ is
bounded but does not converge. However, every bounded sequence does have at least one
convergent subsequence by the Bolzano-Weierstrass theorem.

What is a Cauchy sequence and why is it important?

A Cauchy sequence is one where the terms get arbitrarily close to each other as the sequence
progresses. The importance is that in real numbers, a sequence converges if and only if it’s
Cauchy. This lets you prove convergence without knowing the limit in advance.

How do I prove a sequence converges without finding its limit?

Two main approaches: (1) Show the sequence is monotonic and bounded, then by the Monotone
Convergence Theorem, it converges. (2) Show the sequence is a Cauchy sequence.

What does it mean for a sequence to oscillate infinitely?

A sequence oscillates infinitely if it is unbounded but doesn’t diverge to +∞ or −∞. Example:
⟨(−1)n · n⟩ grows in absolute value but keeps switching signs.

What is the Bolzano-Weierstrass theorem used for?

The Bolzano-Weierstrass theorem guarantees that every bounded sequence has a convergent
subsequence. It’s used in proofs throughout analysis when you need to extract a convergent
subsequence from a bounded sequence.

Real sequences are the foundation of analysis, connecting discrete mathematics to the continuous
world of calculus. Once you understand how sequences behave, concepts like limits, continuity,
and differentiation become much clearer.
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