Claim for a Prime Number Formula

Dr. SMRH Moosavi has claimed that he had derived a general formula for finding the $ n$ -th prime number. More details can be found here at and a brief discussion here at Math.SE titled  "Formula for the nth prime number: discovered?" SOME MORE EXCERPTS ARE HERE:

Numbers – The Basic Introduction

If mathematics was a language, logic was the grammar, numbers should have been the alphabet. There are many types of numbers we use in mathematics, but at a broader aspect we may categorize them in two categories: 1. Countable Numbers 2. Uncountable Numbers The numbers which can be counted in nature are called Countable Numbers and the numbers which can not be counted are called Uncountable Numbers. Well, this is not the correct way to classify the bunch of types…

You might be thinking why am I writing about an individual number? Actually, in previous year annual exams, my registration number was 381654729. Which is just an ‘ordinary’ 9-digit long number. I never cared about it- and forgot it after exam results were announced. But today morning, when I opened “Mathematics Today” magazine’s October 2010, page 8; I was brilliantly shocked. 381654729 is a nine digit number with each of the digits from 1 to 9 appearing once. The whole number is divisible by 9. If you remove the right-most digit, the remaining eight-digit number is divisible by 8. Again removing the next-right-most digit leaves a seven-digit number that is divisible by 7. Similarly, removing next-rightmost digit leaves a six-digit number that is divisible by 6. This property continues all the way down to one digit.

Further research on this number turned out to have a name “Poly-divisible Number.”

Mathematical Wonders happen with Mathematicians. 🙂