Smart Fallacies: i=1, 1= 2 and 1= 3

This mathematical fallacy is due to a simple assumption, that $ -1=\dfrac{-1}{1}=\dfrac{1}{-1}$ . Proceeding with $ \dfrac{-1}{1}=\dfrac{1}{-1}$ and taking square-roots of both sides, we get: $ \dfrac{\sqrt{-1}}{\sqrt{1}}=\dfrac{\sqrt{1}}{\sqrt{-1}}$ Now, as the Euler's constant $ i= \sqrt{-1}$ and $ \sqrt{1}=1$ , we can have $ \dfrac{i}{1}=\dfrac{1}{i} \ldots \{1 \}$ $ \Rightarrow i^2=1 \ldots \{2 \}$ . This is complete contradiction to the fact that $ i^2=-1$ . Again, as $ \dfrac{i}{1}=\dfrac{1}{i}$ or, $ i^2=1$ or, $ i^2+2=1+2$ or, $ -1+2=3$ $ 1=3…

Set Theory, Functions and Real Number System

SETS

In mathematics, Set is a well defined collection of distinct objects. The theory of Set as a mathematical discipline rose up with George Cantor, German mathematician, when he was working on some problems in Trigonometric series and series of real numbers, after he recognized the importance of some distinct collections and intervals.

Cantor defined the set as a ‘plurality conceived as a unity’ (many in one; in other words, mentally putting together a number of things and assigning them into one box).

Mathematically, a Set $ S$ is ‘any collection’ of definite, distinguishable objects of our universe, conceived as a whole. The objects (or things) are called the elements or members of the set $ S$ . Some sets which are often pronounced in real life are, words like ”bunch”, ”herd”, ”flock” etc. The set is a different entity from any of its members.

For example, a flock of birds (set) is not just only a single bird (member of the set). ‘Flock’ is just a mathematical concept with no material existence but ‘Bird’ or ‘birds’ are real.

Representing sets

Sets are represented in two main ways:

Online Books

Free Online Calculus Text Books

Once I listed books on Algebra and Related Mathematics in this article, Since then I was receiving emails for few more related articles. I have tried to list almost all freely available Calculus texts. Here we go:  Elementary Calculus : An approach using infinitesimals by H. J. Keisler Multivariable Calculus by Jim Herod and George Cain Calculus by Gilbert Strang for MIT OPEN COURSE WARE Calculus Bible by G S Gill [Sometimes this link work, and, randomly it won't.] Another…

Dirichlet

Dirichlet’s Theorem and Liouville’s Extension of Dirichlet’s Theorem

Topic Beta & Gamma functions Statement $ \int  \int  \int_{V}  x^{l-1} y^{m-1} z^{n-1} dx  dy ,dz = \frac { \Gamma {(l)} \Gamma {(m)} \Gamma {(n)} }{ \Gamma{(l+m+n+1)} } $ , where V is the region given by $ x \ge 0 y \ge 0 z \ge 0  x+y+z \le 1 $ . [wc_divider style="solid" line="single" margin_top="" margin_bottom=""] Brief Theory on Gamma and Beta Functions Gamma Function If we consider the integral $ I =\displaystyle{\int_0^{\infty}} e^{-t} t^{a-1} \mathrm dt$ , it…