This mathematical fallacy is due to a simple assumption, that $ -1=\dfrac{-1}{1}=\dfrac{1}{-1}$ . Proceeding with $ \dfrac{-1}{1}=\dfrac{1}{-1}$ and taking square-roots of both sides, we get: $ \dfrac{\sqrt{-1}}{\sqrt{1}}=\dfrac{\sqrt{1}}{\sqrt{-1}}$ Now, as the Euler’s constant $ i= \sqrt{-1}$ and $ \sqrt{1}=1$ , we can have $ \dfrac{i}{1}=\dfrac{1}{i} \ldots \{1 \}$ $ \Rightarrow i^2=1 \ldots \{2 \}$ . This is complete contradiction to the …

# Tag: Functions

## Set Theory, Functions and Real Number System

SETS In mathematics, Set is a well defined collection of distinct objects. The theory of Set as a mathematical discipline rose up with George Cantor, German mathematician, when he was working on some problems in Trigonometric series and series of real numbers, after he recognized the importance of some distinct collections and intervals. Cantor defined the set as a ‘plurality …

## Free Online Calculus Text Books

Once I listed books on Algebra and Related Mathematics in this article, Since then I was receiving emails for few more related articles. I have tried to list almost all freely available Calculus texts. Here we go: Elementary Calculus : An approach using infinitesimals by H. J. Keisler Multivariable Calculus by Jim Herod and George Cain Calculus by Gilbert Strang …

## Dirichlet’s Theorem and Liouville’s Extension of Dirichlet’s Theorem

Topic Beta & Gamma functions Statement $ \int \int \int_{V} x^{l-1} y^{m-1} z^{n-1} dx dy ,dz = \frac { \Gamma {(l)} \Gamma {(m)} \Gamma {(n)} }{ \Gamma{(l+m+n+1)} } $ , where V is the region given by $ x \ge 0 y \ge 0 z \ge 0 x+y+z \le 1 $ . Brief Theory on Gamma and Beta Functions Gamma …

## Derivative of x squared is 2x or x ? Where is the fallacy?

We all know that the derivative of $x^2$ is 2x. But what if someone proves it to be just x?

## Solving Ramanujan’s Puzzling Problem

Consider a sequence of functions as follows:- $ f_1 (x) = \sqrt {1+\sqrt {x} } $ $ f_2 (x) = \sqrt{1+ \sqrt {1+2 \sqrt {x} } } $ $ f_3 (x) = \sqrt {1+ \sqrt {1+2 \sqrt {1+3 \sqrt {x} } } } $ ……and so on to $ f_n (x) = \sqrt {1+\sqrt{1+2 \sqrt {1+3 \sqrt {\ldots \sqrt {1+n …