Interesting Egyptian Fraction Problem

Here is an interesting mathematical puzzle alike problem involving the use of Egyptian fractions, whose solution sufficiently uses the basic algebra. Problem Let a, b, c, d and e be five non-zero complex numbers, and; $ a + b + c + d + e = -1$ ... (i) $ a^2+b^2+c^2+d^2+e^2=15$ ...(ii) $ \dfrac{1}{a} + \dfrac{1}{b} +\dfrac{1}{c} +\dfrac{1}{d} +\dfrac{1}{e}= -1$ ...(iii) $ \dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{1}{d^2}+\dfrac{1}{e^2}=15$ ...(iv) $ abcde = -1 $ ...(v). Solve and find the values of a, b, c, d…