# Study Notes

## Jablonski Diagram – Consequences of Light Absorption

All about the Light Absorption’s theory on the basis of Jablonski diagram. According to the Grotthus – Draper Law of photo-chemical activation: Only that light which is absorbed by a system, can bring a photo-chemical change. However it is not true that all the kind of light(s) that are absorbed could bring a photo-chemical change. The

## Essential Steps of Problem Solving in Mathematical Sciences

Problem solving is more than just finding answers. Learning how to solve problems in mathematics is simply to know what to look for. Mathematics problems often require established procedures. To become a problem solver, one must know What, When and How to apply them. To identify procedures, you have to be familiar with the different

## Dirichlet’s Theorem and Liouville’s Extension of Dirichlet’s Theorem

Topic Beta & Gamma functions Statement of Dirichlet’s Theorem $\int \int \int_{V} x^{l-1} y^{m-1} z^{n-1} dx dy ,dz = \frac { \Gamma {(l)} \Gamma {(m)} \Gamma {(n)} }{ \Gamma{(l+m+n+1)} }$ , where V is the region given by $x \ge 0 y \ge 0 z \ge 0 x+y+z \le 1$ .

## The Lindemann Theory of Unimolecular Reactions

In this article we will learn about the Lindemann Theory of Unimolecular Reactions which is also known as Lindemann-Hinshelwood mechanism. It is easy to understand a bimolecular reaction on the basis of collision theory. When two molecules A and B collide, their relative kinetic energy exceeds the threshold energy with the result that the collision

## Albert Einstein and His introduction to the Concept of Relativity

Albert Einstein This name need not be explained. Albert Einstein is considered to be one of the best physicists in the human history. The twentieth century has undoubtedly been the most significant for the advance of science, in general, and Physics, in particular. And Einstein is the most luminated star of the 20th century. He

## Solving Ramanujan’s Puzzling Problem

Consider a sequence of functions as follows:- $f_1 (x) = \sqrt {1+\sqrt {x} }$ $f_2 (x) = \sqrt{1+ \sqrt {1+2 \sqrt {x} } }$ $f_3 (x) = \sqrt {1+ \sqrt {1+2 \sqrt {1+3 \sqrt {x} } } }$ ……and so on to \$ f_n (x) = \sqrt {1+\sqrt{1+2 \sqrt