I don’t feel that I should explain the importance of kinematics in Physics. Kinematic equations form the very foundation of any question you intend to solve in physics. Be it uniform rectilinear motion or rotational motion, these equations will always help you to find the correct answer. Whether you are

# Study Notes

Study Notes on Math, Physics and Chemistry

Everything is the result of chemical reactions whether you cry or burn wood or dissolve sugar. No process is possible without any chemical reactions occurring in them. Chemical reactions are the basis of each and every activity going on around us. Although there are innumerable activities that involve a chemical

If you are aware of elementary facts of geometry, then you might know that the area of a circle with radius $ R$ is $ \pi R^2$ . The radius is actually the measure(length) of a line joining the center of circle and any point on the circumference of the

Formulas are the most important part of mathematics and as we all know one is the backbone of the latter. Considering there are thousands of mathematical formulas to help people develop analytical approach and solve problems easily — there are some that go beyond. Some formulas aren’t just timesaving but

“Blood Facts” – seriously? Like all humans who have red colored blood, there are few organisms which have varying blood colors. Spiders and octopus have blue color blood, cockroaches have white/colorless blood, grasshopper, leeches, and some varieties of earthworm have green color blood and so on. Apart from these, there

Introduction In earlier parts we discussed the basics of integral equations and how they can be derived from ordinary differential equations. In second part, we also solved a linear integral equation using trial method. Now we are in a situation from where main job of solving Integral Equations can be started. But before

Linear Space or Vector Space over a field K Definition: The linear space over a field K is a non-empty set along with a function $+ : X \times X \to X$ called linear/vector addition (or just, ‘addition‘) and another function $ \cdot : K \times X \to X$ called

‘Symmetry’ has a special meaning in physics. A picture is said to be symmetrical if one side is somehow the same as the other side. Precisely, a thing is symmetrical if one can subject it to a certain operation and it appears exactly the same after the operation. For example,

In this article we will define what are Macrostates and Microstates in Statistical Physics with examples and illustrations. Consider some (4, say) distinguishable particles. If we wish to distribute them into two exactly similar compartments in an open box, then the priori probability for a particle of going into any

This post explains the basic method of converting an integral equation into a corresponding differential equation.

Square Integrable function or quadratically integrable function $\mathfrak{L}_2$ function A function $y(x)$ is said to be square integrable or $\mathfrak{L}_2$ function on the interval $(a,b)$ if $$\displaystyle {\int_a^b} {|y(x)|}^2 dx <\infty$$ or $$\displaystyle {\int_a^b} y(x) \bar{y}(x) dx <\infty$$. For further reading, I suggest this Wikipedia page. $y(x)$ is then also

In this article I will explain what are Integral Equations, how those are structured and what are certain types of Integral Equations. What is an Integral Equation? An integral equation is an equation in which an unknown function appears under one or more integration signs. Any integral calculus statement like

Every student or graduate knows how hard the first experience of passing exams is. Preliminary preparation starves the nervous system and the physical condition of the human body, however, the exam itself is always a stressful situation, which requires a candidate a great manifestation of mental and physical abilities. Therefore,

This is a continuation of the series of summer projects sponsored by department of science and technology, government of India. In this project work, I have worked to collect and expand what Ramanujan did with Nested Radicals and summarized all important facts into the one article. In the article, there

Sequence of real numbers A sequence of real numbers (or a real sequence) is defined as a function $ f: \mathbb{N} \to \mathbb{R}$ , where $ \mathbb{N}$ is the set of natural numbers and $ \mathbb{R}$ is the set of real numbers. Thus, $ f(n)=r_n, \ n \in \mathbb{N}, \

These study notes on Set Theory, Functions and Real Numbers were written by Gaurav Tiwari when he was studying as a Math undergraduate in 2012-2013. The language is sought to be simple and easy to understand. Further reading material is also provided with this article. If you have any questions,

The greatest number theorist in mathematical universe, Leonhard Euler had discovered some formulas and relations in number theory, which were based on practices and were correct to limited extent but still stun the mathematicians. The prime generating equation by Euler is a very specific binomial equation on prime numbers and

“Irrational numbers are those real numbers which are not rational numbers!” Def.1: Rational Number A rational number is a real number which can be expressed in the form of where $ a$ and $ b$ are both integers relatively prime to each other and $ b$ being non-zero. Following two