This mathematical fallacy is due to a simple assumption, that $-1=\dfrac{-1}{1}=\dfrac{1}{-1}$ .

Proceeding with $\dfrac{-1}{1}=\dfrac{1}{-1}$ and taking square-roots of both sides, we get:

$\dfrac{\sqrt{-1}}{\sqrt{1}}=\dfrac{\sqrt{1}}{\sqrt{-1}}$

Now, as the Euler’s constant $i= \sqrt{-1}$ and $\sqrt{1}=1$ , we can have

$\dfrac{i}{1}=\dfrac{1}{i} \ldots \{1 \}$

$\Rightarrow i^2=1 \ldots \{2 \}$ .

This is complete contradiction to the fact that $i^2=-1$ .

Again, as $\dfrac{i}{1}=\dfrac{1}{i}$

or, $i^2=1$

or, $i^2+2=1+2$

or, $-1+2=3$

$1=3 \ldots \{3 \}$ .

or, in general $a=a+2, \ \forall a \in \mathbb{C}$

Again using equation $\{1 \}$ and dividing both sides by 2, we get

$\dfrac{i}{2}=\dfrac{1}{2i}$

$\Rightarrow \dfrac{i}{2}+\dfrac{3}{2i}=\dfrac{1}{2i}+\dfrac{3}{2i}$

$\Rightarrow i \dfrac{i}{2}+i \dfrac{3}{2i}=i \dfrac{1}{2i}+i \dfrac{3}{2i}$

$\Rightarrow \dfrac{i^2}{2}+\dfrac{3}{2}=\dfrac{1}{2}+\dfrac{3}{2}$

$\dfrac{-1}{2} +\dfrac{3}{2}=\dfrac{1}{2}+\dfrac{3}{2}$

$1=2 \ldots \{4 \}$

or, in general $b=b+1, \ \forall b \in \mathbb{C}$

$\Box$

## Where is the error?

These fallacies were derived since we ignored the negative ‘Square-roots’ of 1 & -1. If we put $\sqrt{1}=\pm 1$ and $\sqrt{-1}=\pm i$ , then the results would have been different. Also note that $\sqrt{-1}=\pm i$ but $i= \sqrt{-1}=+\sqrt{-1}$ .

Feel free to ask questions, send feedback and even point out mistakes. Great conversations start with just a single word. How to write better comments?

This site uses Akismet to reduce spam. Learn how your comment data is processed.

## Euler’s (Prime to) Prime Generating Equation

The greatest number theorist in mathematical universe, Leonhard Euler had discovered some formulas and relations in number theory, which were based on practices and were correct to limited extent but still stun the mathematicians. The prime generating equation by Euler is a very specific binomial equation on prime numbers and yields more primes than any other relations out there in… Consider a sequence of functions as follows:- $f_1 (x) = \sqrt {1+\sqrt {x} }$ $f_2 (x) = \sqrt{1+ \sqrt {1+2 \sqrt {x} } }$ $f_3 (x) = \sqrt {1+ \sqrt {1+2 \sqrt {1+3 \sqrt {x} } } }$ ……and so on to $f_n (x) = \sqrt {1+\sqrt{1+2 \sqrt {1+3 \sqrt {\ldots \sqrt {1+n… Read More ## Dirichlet’s Theorem and Liouville’s Extension of Dirichlet’s Theorem Topic Beta & Gamma functions Statement of Dirichlet’s Theorem$ \int  \int  \int_{V}  x^{l-1} y^{m-1} z^{n-1} dx  dy ,dz = \frac { \Gamma {(l)} \Gamma {(m)} \Gamma {(n)} }{ \Gamma{(l+m+n+1)} } $, where V is the region given by$ x \ge 0 y \ge 0 z \ge 0  x+y+z \le 1 \$ . Brief Theory on Gamma and… 