John Milnor at the Celebration of the 90th bir...
John Milnor

The Norwegian Academy of Science and Letters has decided to award the Abel Prize for 2011 to John Milnor, Institute for Mathematical Sciences, Stony Brook University, New York “for pioneering discoveries in topology, geometry and algebra”. The President of the Norwegian Academy of Science and Letters, Øyvind Østerud, announced the winner of this year’s Abel Prize at the Academy in Oslo today, 23 March.

John Milnor will receive the Abel Prize from His Majesty King Harald at an award ceremony in Oslo on 24 May. The Abel Prize recognizes contributions of extraordinary depth and influence to the mathematical sciences and has been awarded annually since 2003. It carries a cash award of NOK 6,000,000 (close to EUR 750,000 or USD 1 mill.)


John Milnor’s profound ideas and fundamental discoveries have largely shaped the mathematical landscape of the second half of the 20th century. All of Milnor’s work display features of great research: profound insights, vivid imagination, striking surprises and supreme beauty. He receives the 2011 Abel Prize “for pioneering discoveries in topology, geometry and algebra,” to quote the Abel committee.

In the course of 60 years, John Milnor has made a deep mark on modern mathematics. Numerous mathematical concepts, results and conjectures are named after him. In the literature we find Milnor exotic spheres, Milnor fibration, Milnor number and many more.
Yet the significance of Milnor’s work goes far beyond his own spectacular results. He has also written tremendously influential books, which are widely considered to be models of fine mathematical writing.

Awards and honours

John Milnor has received many awards and honours. He received the Fields Medal in 1962 for his work in differential topology when he was only 31. Recently he was awarded the 2011 Leroy P. Steele Prize for Lifetime Achievement by the American Mathematical Society. Milnor has previously won two other Steele Prizes from the AMS: for Mathematical Exposition (2004) and for Seminal Contribution to Research (1982). In 1989 Milnor received the Wolf Prize in Mathematics.
John Milnor received the US National Medal of Science in 1967. He was elected as a member of the National Academy of Sciences in 1963. Since 1994, he has been a foreign member of the Russian Academy of Sciences, and in 2004 he became a member of the European Academy of Sciences, Arts and Letters.

The Abel Prize

The Niels Henrik Abel Memorial Fund was established in 2002 to award the Abel Prize for outstanding scientific work in the field of mathematics. The Abel Prize was awarded for the first time in 2003.
The prize is awarded by the Norwegian Academy of Science and Letters. The choice of Abel Laureate is based on the recommendation of the Abel Committee, which consists of five internationally recognized mathematicians.

[Source Page: http://www.abelprisen.no/en/]

I have just completed one of the more difficult assignments of my mathematical life: to give a popular presentation of the work of John Milnor immediately following the formal announcement that he was the winner of this year’s Abel Prize. Of course, in one way the task is very straightforward, since Milnor is a mathematical giant and has a large number of fascinating theorems to his name. However, these theorems are not in my field, the talk was … Read More

via Gowers’s Weblog

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

You May Also Like

Essential Steps of Problem Solving in Mathematical Sciences

Learning how to solve problems in mathematics is simply to know what to look for.   Mathematics problems often require established procedures. To become a problem solver, one must know What, When and How to apply them. To identify procedures, you have to be familiar with the different problem situations. You must also be good in gathering information, extracting strategies…

Fermat Numbers

Fermat Number, a class of numbers, is an integer of the form $ F_n=2^{2^n} +1 \ \ n \ge 0$ . For example: Putting $ n := 0,1,2 \ldots$ in $ F_n=2^{2^n}$ we get $ F_0=3$ , $ F_1=5$ , $ F_2=17$ , $ F_3=257$ etc. Fermat observed that all the integers $ F_0, F_1, F_2, F_3, \ldots$ were prime…

Fox – Rabbit Chase Problems

Part I: A fox chases a rabbit. Both run at the same speed $ v$ . At all times, the fox runs directly toward the instantaneous position of the rabbit , and the rabbit runs at an angle $ \alpha $ relative to the direction directly away from the fox. The initial separation between the fox and the rabbit is…

Difference Paradox

Consider two natural numbers $n_1$ and $n_2$, out of which one is twice as large as the other. We are not told whether $n_1$ is larger or $n_2$, we can state following two propositions: PROPOSITION 1: The difference $n_1-n_2$, if $n_1 >n_2$, is different from the difference $n_2-n_1$, if $n_2 >n_1$. PROPOSITION 2: The difference $n_1-n_2$, if $n_1 >n_2$, is the same…

Cloud Computing

Intro The much talked about Cloud Computing promises to change the way Information Technology People look at delivering IT and the way business people perceive it. This one is now a general and important part of IT. Why is “Cloud” connected to Computing?$ The name cloud computing was inspired by the cloud symbol that’s often used to represent the Internet…

The Area of a Disk

If you are aware of elementary facts of geometry, then you might know that the area of a disk with radius $ R$ is $ \pi R^2$ . The radius is actually the measure(length) of a line joining the center of disk and any point on the circumference of the disk or any other circular lamina. Radius for a disk…