If mathematics was a language, logic was the grammar, numbers should have been the alphabet. There are many types of numbers we use in mathematics, but at a broader aspect we may categorize them in two categories: 1. Countable Numbers 2. Uncountable Numbers The numbers which can be counted in

# Real Analysis

Multiplication is probably the most important elementary operation in mathematics; even more important than usual addition. Every math-guy has its own style of multiplying numbers. But have you ever tried multiplicating by this way? Exercise: $ 88 \times 45$ =? Ans: as usual :- 3960 but I got this using

Weierstrass had drawn attention to the fact that there exist functions which are continuous for every value of $ x$ but do not possess a derivative for any value. We now consider the celebrated function given by Weierstrass to show this fact. It will be shown that if $ f(x)=

In this list I have collected all useful and important free online calculus textbooks mostly in downloadable pdf format. Feel free to download and use these. Elementary Calculus : An approach using infinitesimals by H. J. Keisler https://www.math.wisc.edu/~keisler/keislercalc-12-23-18.pdf Multivariable Calculus by Jim Herod and George Cain http://people.math.gatech.edu/~cain/notes/calculus.html Calculus by Gilbert

Intro Let $ \mathbf{Q}$ be the set of rational numbers. It is well known that $ \mathbf{Q}$ is an ordered field and also the set $ \mathbf{Q}$ is equipped with a relation called “less than” which is an order relation. Between two rational numbers there exists an infinite number of

In this article we will formulate the D’ Alembert’s Ratio Test on convergence of a series. Let’s start. Statement of D’Alembert Ratio Test A series $ \sum {u_n}$ of positive terms is convergent if from and after some fixed term $ \dfrac {u_{n+1}} {u_n} < r < {1} $ ,

Topic Beta & Gamma functions Statement of Dirichlet’s Theorem $ \int \int \int_{V} x^{l-1} y^{m-1} z^{n-1} dx dy ,dz = \frac { \Gamma {(l)} \Gamma {(m)} \Gamma {(n)} }{ \Gamma{(l+m+n+1)} } $ , where V is the region given by $ x \ge 0 y \ge 0 z \ge 0

We all know that the derivative of $x^2$ is 2x. But what if someone proves it to be just x?