Problems

Problems and their Solving Approaches in Math

Our reader Eswar Chellappa has sent his work on the solution of ‘3X+1’ problem, also called Collatz Conjecture. He had been working on the proof of Collatz Conjecture off and on for almost ten years. The Collatz Conjecture can be quoted as follow: Let $\phi : \mathbb{N} \to \mathbb{N}^+$ be a

Infinitely many answers questions are possible to the answer, “No”. So, our real task should be to find one of THOSE many, which seems to be a perfect one. A simple and the first ever logical approach of giving answers to a question is to derive answers from the question, that

This mathematical fallacy is due to a simple assumption, that $ -1=\dfrac{-1}{1}=\dfrac{1}{-1}$ . Proceeding with $ \dfrac{-1}{1}=\dfrac{1}{-1}$ and taking square-roots of both sides, we get: $ \dfrac{\sqrt{-1}}{\sqrt{1}}=\dfrac{\sqrt{1}}{\sqrt{-1}}$ Now, as the Euler’s constant $ i= \sqrt{-1}$ and $ \sqrt{1}=1$ , we can have $ \dfrac{i}{1}=\dfrac{1}{i} \ldots \{1 \}$ $ \Rightarrow i^2=1

Here is an interesting mathematical puzzle alike problem involving the use of Egyptian fractions, whose solution sufficiently uses the basic algebra. Problem Let a, b, c, d and e be five non-zero complex numbers, and; $ a + b + c + d + e = -1$ … (i) $

Ramanujan (1887-1920) discovered some formulas on algebraic nested radicals. This article is based on one of those formulas. The main aim of this article is to discuss and derive them intuitively. Nested radicals have many applications in Number Theory as well as in Numerical Methods . The simple binomial theorem

Two close friends, Robert and Thomas, met again after a gap of several years. Robert Said: I am now married and have three children. Thomas Said: That’s great! How old they are? Robert: Thomas! Guess it yourself with some clues provided by me. The product of the ages of my

Before my college days I used to multiply this way. But as time passed, I learned new things. In a Hindi magazine named “Bhaskar Lakshya”, I read an article in which a columnist ( I can’t remember his name) suggested how to multiply in single line (row). That was a magic

Multiplication is probably the most important elementary operation in mathematics; even more important than usual addition. Every math-guy has its own style of multiplying numbers. But have you ever tried multiplicating by this way? Exercise: $ 88 \times 45$ =? Ans: as usual :- 3960 but I got this using

Get up to 80% discount on various products with exclusive coupons