Our reader Eswar Chellappa has sent his work on the solution of ‘3X+1’ problem, also called Collatz Conjecture. He had been working on the proof of Collatz Conjecture off and on for almost ten years. The Collatz Conjecture can be quoted as follow: Let $\phi : \mathbb{N} \to \mathbb{N}^+$ be a function defined  such that: $$\phi(x):=

Infinitely many answers questions are possible to the answer, “No”. So, our real task should be to find one of THOSE many, which seems to be a perfect one. A simple and the first ever logical approach of giving answers to a question is to derive answers from the question, that is, replace some words of the

This mathematical fallacy is due to a simple assumption, that $ -1=\dfrac{-1}{1}=\dfrac{1}{-1}$ . Proceeding with $ \dfrac{-1}{1}=\dfrac{1}{-1}$ and taking square-roots of both sides, we get: $ \dfrac{\sqrt{-1}}{\sqrt{1}}=\dfrac{\sqrt{1}}{\sqrt{-1}}$ Now, as the Euler’s constant $ i= \sqrt{-1}$ and $ \sqrt{1}=1$ , we can have $ \dfrac{i}{1}=\dfrac{1}{i} \ldots \{1 \}$ $ \Rightarrow i^2=1 \ldots \{2 \}$ . This

Here is an interesting mathematical puzzle alike problem involving the use of Egyptian fractions, whose solution sufficiently uses the basic algebra. Problem Let a, b, c, d and e be five non-zero complex numbers, and; $ a + b + c + d + e = -1$ … (i) $ a^2+b^2+c^2+d^2+e^2=15$ …(ii) $ \dfrac{1}{a} +

Ramanujan (1887-1920) discovered some formulas on algebraic nested radicals. This article is based on one of those formulas. The main aim of this article is to discuss and derive them intuitively. Nested radicals have many applications in Number Theory as well as in Numerical Methods . The simple binomial theorem of degree 2 can be