Category Number Theory

Numbers – The Basic Introduction

If mathematics was a language, logic was the grammar, numbers should have been the alphabet. There are many types of numbers we use in mathematics, but at a broader aspect we may categorize them in two categories: 1. Countable Numbers 2. Uncountable Numbers The numbers which can be counted in nature are called Countable Numbers and the numbers which can…
Read More

How Many Fishes in One Year? [A Puzzle in Making]

This is a puzzle which I told to my classmates during a talk, a few days before. I did not represent it as a puzzle, but a talk suggesting the importance of Math in general life. This is partially solved for me and I hope you will run your brain-horse to help me solve it completely. If you didn’t notice,…
Read More

381654729 : An Interesting Number Happened To Me Today

You might be thinking why am I writing about an individual number? Actually, in previous year annual exams, my registration number was 381654729. Which is just an ‘ordinary’ 9-digit long number. I never cared about it- and forgot it after exam results were announced. But today morning, when I opened “Mathematics Today” magazine’s October 2010, page 8; I was brilliantly…
Read More

Do you multiply this way!

Before my college days I used to multiply this way. But as time passed, I learned new things. In a Hindi magazine named “Bhaskar Lakshya”, I read an article in which a columnist ( I can’t remember his name) suggested how to multiply in single line (row). That was a magic to me.  I found doing multiplications this way, very faster –…
Read More

Just another way to Multiply

Multiplication is probably the most important elementary operation in mathematics; even more important than usual addition. Every math-guy has its own style of multiplying numbers. But have you ever tried multiplicating by this way? Exercise: $ 88 \times 45$ =? Ans: as usual :- 3960 but I got this using a particular way: 88            45…
Read More

Solving Ramanujan’s Puzzling Problem

Consider a sequence of functions as follows:- $ f_1 (x) = \sqrt {1+\sqrt {x} } $ $ f_2 (x) = \sqrt{1+ \sqrt {1+2 \sqrt {x} } } $ $ f_3 (x) = \sqrt {1+ \sqrt {1+2 \sqrt {1+3 \sqrt {x} } } } $ ……and so on to $ f_n (x) = \sqrt {1+\sqrt{1+2 \sqrt {1+3 \sqrt {\ldots \sqrt {1+n…
Read More