# Number Theory

## This Prime Generating Product generates successive prime factors

Any integer greater than 1 is called a prime number if and only if its positive factors are 1 and the number p itself. The basic ideology involved in this post is flawed and the post has now been moved to Archives. – The Editor Prime Generating Formulas We all know how hard it is to predict a formula

## A Possible Proof of Collatz Conjecture

Our reader Eswar Chellappa has sent his work on the solution of ‘3X+1’ problem, also called Collatz Conjecture. He had been working on the proof of Collatz Conjecture off and on for almost ten years. The Collatz Conjecture can be quoted as follow: Let $\phi : \mathbb{N} \to \mathbb{N}^+$ be a function defined  such that: \phi(x):=

## My mobile number is a prime number

My personal mobile number 9565804301 is a prime number. What is a prime number? Any integer p greater than 1 is called a prime number if and only if its positive factors are 1 and the number p itself. In other words, the natural numbers which are completely divisible by 1 and themselves only and have no other factors, are

## Complete Elementary Analysis of Nested radicals

This is a continuation of the series of summer projects sponsored by department of science and technology, government of India. In this project work, I have worked to collect and expand what Ramanujan did with Nested Radicals and summarized all important facts into the one article. In the article, there are formulas, formulas and only

## Smart Fallacies: i=1, 1= 2 and 1= 3

This mathematical fallacy is due to a simple assumption, that $-1=\dfrac{-1}{1}=\dfrac{1}{-1}$ . Proceeding with $\dfrac{-1}{1}=\dfrac{1}{-1}$ and taking square-roots of both sides, we get: $\dfrac{\sqrt{-1}}{\sqrt{1}}=\dfrac{\sqrt{1}}{\sqrt{-1}}$ Now, as the Euler’s constant $i= \sqrt{-1}$ and $\sqrt{1}=1$ , we can have $\dfrac{i}{1}=\dfrac{1}{i} \ldots \{1 \}$ $\Rightarrow i^2=1 \ldots \{2 \}$ . This

## Interesting Egyptian Fraction Problem

Here is an interesting mathematical puzzle alike problem involving the use of Egyptian fractions, whose solution sufficiently uses the basic algebra. Problem Let a, b, c, d and e be five non-zero complex numbers, and; $a + b + c + d + e = -1$ … (i) $a^2+b^2+c^2+d^2+e^2=15$ …(ii) \$ \dfrac{1}{a} +