Education

Gaurav Tiwari is one of the top Education bloggers online, specializing in exam preparation, online learning and career development.

Four friends Matt, James, Ian and Barry, who all knew each other from being members of the Automattic, called Automatticians, sat around a table that had a dish with 11 apples in it. The chat was intense, and they ended up eating all the apples. Everybody had at least one apple, and everyone know that fact, and each automattician knew the number of apples he ate.

Part I: A fox chases a rabbit. Both run at the same speed $ v$ . At all times, the fox runs directly toward the instantaneous position of the rabbit , and the rabbit runs at an angle $ \alpha $ relative to the direction directly away from the fox. The initial separation between the fox and the rabbit is $ l$ . When and where

Weierstrass had drawn attention to the fact that there exist functions which are continuous for every value of $ x$ but do not possess a derivative for any value. We now consider the celebrated function given by Weierstrass to show this fact. It will be shown that if $ f(x)= \displaystyle{\sum_{n=0}^{\infty} } b^n \cos (a^n \pi x) \ \ldots (1) \ = \cos \pi x +b

Memory, in human reference, is the ability to store retain and recall information when needed. Without hammering the mind in the definitions, let we look into the ten methods of boosting our memory:  1. Simple Repetition Method The classical method, very popular as in committing poems to memory by reading them over and over. 2. Full Concentration Method Concentrate on the topic content while learning. Do

In this list I have collected all useful and important free online calculus textbooks mostly in downloadable pdf format. Feel free to download and use these. Elementary Calculus : An approach using infinitesimals by H. J. Keisler https://www.math.wisc.edu/~keisler/keislercalc-12-23-18.pdf Multivariable Calculus by Jim Herod and George Cain http://people.math.gatech.edu/~cain/notes/calculus.html Calculus by Gilbert Strang http://ocw.mit.edu/ans7870/textbooks/Strang/strangtext.htm Calculus Bible by Neveln http://www.cs.widener.edu/~neveln/Calcbible.pdf Lecture Notes for Applied Calculus by Karl Heinz Dovermann

Intro Let $ \mathbf{Q}$ be the set of rational numbers. It is well known that $ \mathbf{Q}$ is an ordered field and also the set $ \mathbf{Q}$ is equipped with a relation called “less than” which is an order relation. Between two rational numbers there exists an infinite number of elements of $ \mathbf{Q}$. Thus, the system of rational numbers seems to be dense and so apparently

Looking for free PDF algebra and topology books online? I have gathered a list of free e-books on Algebra, Topology, and Related Mathematics. I hope it will be very helpful to all students and teachers searching for high-quality content. If any link is broken, please email me at gaurav@gauravtiwari.org. Let’s start. Abstract Algebra Online by Prof. Beachy This site contains many of the definitions and theorems from the area

In this article we will formulate the D’ Alembert’s Ratio Test on convergence of a series. Let’s start. Statement of D’Alembert Ratio Test A series $ \sum {u_n}$ of positive terms is convergent if from and after some fixed term $ \dfrac {u_{n+1}} {u_n} < r < {1} $ , where r is a fixed number. The series is divergent if $ \dfrac{u_{n+1}} {u_n} > 1$

Prove that $ {(x+y)}^n-x^n-y^n$ is divisible by $ xy(x+y) \times (x^2+xy+y^2)$ if $ n$ is an odd number not divisible by $ 3$ . Prove that $ {(x+y)}^n-x^n-y^n$ is divisible by $ xy(x+y) \times {(x^2+xy+y^2)}^2$ if $ n \equiv \pmod{6}1$ Solution 1.Considering the given expression as a polynomial in $ y$ , let us put $ y=0 $ . We see that at $ y=0 $

All about the Light Absorption’s theory on the basis of Jablonski diagram. According to the Grotthus – Draper Law of photo-chemical activation: Only that light which is absorbed by a system, can bring a photo-chemical change. However it is not true that all the kind of light(s) that are absorbed could bring a photo-chemical change. The absorption of light may result in a number of other phenomena as

Problem solving is more than just finding answers. Learning how to solve problems in mathematics is simply to know what to look for. Mathematics problems often require established procedures. To become a problem solver, one must know What, When and How to apply them. To identify procedures, you have to be familiar with the different problem situations. You must also be good at gathering information, extracting

I was reading a book on ancient mathematics problems from Indian mathematicians. Here I wish to share one problem from Bhaskaracharya‘s famous creation Lilavati. Who was Bhaskaracharya? Bhaskara II, who is popularly known as Bhaskaracharya, was an Indian mathematician and astronomer from the 12th century. He’s especially known at the discovery of the fundamentals of differential calculus and its application to astronomical problems and computations. What

Henry Poincaré was trying to save the Old classical theory of Physics by Suitable Adjustments & Modifications in it. When the experiments, like Michelson Morley Experiment, in search of the ether drift failed, it began to be increasingly realized that there was no such thing as an absolute or privileged frame of reference and that the basic laws of physics took the same form in all

There are many mathematicians, chemists, musicians, painters & biologists among us. But they are unaware of their qualities. Only some small suggestive strokes are needed for them. Unless one tells them, they will not know how great they are. Here is a small self test. Do you enjoy music, drums and dance? Do you enjoy looking at the flowers, carpets, 3D images & symmetrical sculptures like

The Collatz Conjecture is one of the Unsolved problems in mathematics, especially in Number Theory. The Collatz Conjecture is also termed as 3n+1 conjecture, Ulam Conjecture, Kakutani’s Problem, Thwaites Conjecture, Hasse’s Algorithm, Syracuse Problem. Statement: Start with any positive integer. • Halve it, if it is even. Or • triple it and add 1, if it is odd. If you keep repeating this procedure, you shall

Topic Beta & Gamma functions Statement of Dirichlet’s Theorem $ \int  \int  \int_{V}  x^{l-1} y^{m-1} z^{n-1} dx  dy ,dz = \frac { \Gamma {(l)} \Gamma {(m)} \Gamma {(n)} }{ \Gamma{(l+m+n+1)} } $ , where V is the region given by $ x \ge 0 y \ge 0 z \ge 0  x+y+z \le 1 $ . Brief Theory on Gamma and Beta Functions Gamma Function If we

In this article we will learn about the Lindemann Theory of Unimolecular Reactions which is also known as Lindemann-Hinshelwood mechanism. It is easy to understand a bimolecular reaction on the basis of collision theory. When two molecules A and B collide, their relative kinetic energy exceeds the threshold energy with the result that the collision results in the breaking of comes and the formation of new

Puzzle Two women were selling marbles in the market place — one at three for a Rupee and other at two for a Rupee. One day both of then were obliged to return home when each had thirty marbles unsold. They put together the two lots of marbles and handing them over to a friend asked her to sell then at five for 2 Rupees. According