Math

All mathematics articles on Gaurav Tiwari.

In this list I have collected all useful and important free online calculus textbooks mostly in downloadable pdf format. Feel free to download and use these. Elementary Calculus : An approach using infinitesimals by H. J. Keisler https://www.math.wisc.edu/~keisler/keislercalc-12-23-18.pdf Multivariable Calculus by Jim Herod and George Cain http://people.math.gatech.edu/~cain/notes/calculus.html Calculus by Gilbert Strang http://ocw.mit.edu/ans7870/textbooks/Strang/strangtext.htm Calculus Bible by Neveln http://www.cs.widener.edu/~neveln/Calcbible.pdf Lecture Notes for Applied Calculus by Karl Heinz Dovermann

Intro Let $ \mathbf{Q}$ be the set of rational numbers. It is well known that $ \mathbf{Q}$ is an ordered field and also the set $ \mathbf{Q}$ is equipped with a relation called “less than” which is an order relation. Between two rational numbers there exists an infinite number of elements of $ \mathbf{Q}$. Thus, the system of rational numbers seems to be dense and so apparently

Looking for free PDF algebra and topology books online? I have gathered a list of free e-books on Algebra, Topology, and Related Mathematics. I hope it will be very helpful to all students and teachers searching for high-quality content. If any link is broken, please email me at gaurav@gauravtiwari.org. Let’s start. Abstract Algebra Online by Prof. Beachy This site contains many of the definitions and theorems from the area

In this article we will formulate the D’ Alembert’s Ratio Test on convergence of a series. Let’s start. Statement of D’Alembert Ratio Test A series $ \sum {u_n}$ of positive terms is convergent if from and after some fixed term $ \dfrac {u_{n+1}} {u_n} < r < {1} $ , where r is a fixed number. The series is divergent if $ \dfrac{u_{n+1}} {u_n} > 1$

Prove that $ {(x+y)}^n-x^n-y^n$ is divisible by $ xy(x+y) \times (x^2+xy+y^2)$ if $ n$ is an odd number not divisible by $ 3$ . Prove that $ {(x+y)}^n-x^n-y^n$ is divisible by $ xy(x+y) \times {(x^2+xy+y^2)}^2$ if $ n \equiv \pmod{6}1$ Solution 1.Considering the given expression as a polynomial in $ y$ , let us put $ y=0 $ . We see that at $ y=0 $

Problem solving is more than just finding answers. Learning how to solve problems in mathematics is simply to know what to look for. Mathematics problems often require established procedures. To become a problem solver, one must know What, When and How to apply them. To identify procedures, you have to be familiar with the different problem situations. You must also be good at gathering information, extracting

I was reading a book on ancient mathematics problems from Indian mathematicians. Here I wish to share one problem from Bhaskaracharya‘s famous creation Lilavati. Who was Bhaskaracharya? Bhaskara II, who is popularly known as Bhaskaracharya, was an Indian mathematician and astronomer from the 12th century. He’s especially known at the discovery of the fundamentals of differential calculus and its application to astronomical problems and computations. What

There are many mathematicians, chemists, musicians, painters & biologists among us. But they are unaware of their qualities. Only some small suggestive strokes are needed for them. Unless one tells them, they will not know how great they are. Here is a small self test. Do you enjoy music, drums and dance? Do you enjoy looking at the flowers, carpets, 3D images & symmetrical sculptures like

The Collatz Conjecture is one of the Unsolved problems in mathematics, especially in Number Theory. The Collatz Conjecture is also termed as 3n+1 conjecture, Ulam Conjecture, Kakutani’s Problem, Thwaites Conjecture, Hasse’s Algorithm, Syracuse Problem. Statement: Start with any positive integer. • Halve it, if it is even. Or • triple it and add 1, if it is odd. If you keep repeating this procedure, you shall

Topic Beta & Gamma functions Statement of Dirichlet’s Theorem $ \int  \int  \int_{V}  x^{l-1} y^{m-1} z^{n-1} dx  dy ,dz = \frac { \Gamma {(l)} \Gamma {(m)} \Gamma {(n)} }{ \Gamma{(l+m+n+1)} } $ , where V is the region given by $ x \ge 0 y \ge 0 z \ge 0  x+y+z \le 1 $ . Brief Theory on Gamma and Beta Functions Gamma Function If we

Puzzle Two women were selling marbles in the market place — one at three for a Rupee and other at two for a Rupee. One day both of then were obliged to return home when each had thirty marbles unsold. They put together the two lots of marbles and handing them over to a friend asked her to sell then at five for 2 Rupees. According

In 1904, the french Mathematician Henri Poincaré (en-US: Henri Poincare) posed an epoch-making question, which later came to be termed as Poincare Conjecture, in one of his papers, which asked: If a three-dimensional shape is simply connected, is it homeomorphic to the three-dimensional sphere? Henri Poincare – 1904 So what does it really mean? How can a regular math reader understand what poincare conjecture is and

What is a Prime Number? An integer, say $ p $ , [ $ \ne {0} $ & $ \ne { \pm{1}} $ ] is said to be a prime integer iff its only factors (or divisors) are $ \pm{1} $ & $ \pm{p} $ . As? Few easy examples are: $ \pm{2}, \pm{3}, \pm{5}, \pm{7}, \pm{11}, \pm{13} $ …….etc. This list goes up to infinity

Consider a sequence of functions as follows:- $ f_1 (x) = \sqrt {1+\sqrt {x} } $ $ f_2 (x) = \sqrt{1+ \sqrt {1+2 \sqrt {x} } } $ $ f_3 (x) = \sqrt {1+ \sqrt {1+2 \sqrt {1+3 \sqrt {x} } } } $ ……and so on to $ f_n (x) = \sqrt {1+\sqrt{1+2 \sqrt {1+3 \sqrt {\ldots \sqrt {1+n \sqrt {x} } } } }