All mathematics articles on Gaurav Tiwari.

Square Integrable function or quadratically integrable function $\mathfrak{L}_2$ function A function $y(x)$ is said to be square integrable or $\mathfrak{L}_2$ function on the interval $(a,b)$ if $$\displaystyle {\int_a^b} {|y(x)|}^2 dx <\infty$$ or $$\displaystyle {\int_a^b} y(x) \bar{y}(x) dx <\infty$$. For further reading, I suggest this Wikipedia page. $y(x)$ is then also called ‘regular function’. The kernel $K(x,t)$ , a function of two variables is an $\mathfrak{L_2}$ – function if atleast one

In this article I will explain what are Integral Equations, how those are structured and what are certain types of Integral Equations. What is an Integral Equation? An integral equation is an equation in which an unknown function appears under one or more integration signs. Any integral calculus statement like — $ y= \int_a^b \phi(x) dx$ can be considered as an integral equation. If you noticed

11th December 2013 (or in short 11-12-13) is just a few hours away here. It’s the last date of the 21st century with  such an extraordinary pattern of numbers.  In any calendar of the world, such date will be seen in 22nd century after 87 years and 54 days from today — on February 3, 2101, if all kind of date setup permutations $ are used —

This is a continuation of the series of summer projects sponsored by department of science and technology, government of India. In this project work, I have worked to collect and expand what Ramanujan did with Nested Radicals and summarized all important facts into the one article. In the article, there are formulas, formulas and only formulas — I think this is exactly what Ramanujan is known

In an earlier post, I discussed the basic and most important aspects of Set theory, Functions and Real Number System. In the same, there was a significant discussion about the union and intersection of sets. Restating the facts again, given a collection $ \mathcal{A}$ of sets, the union of the elements of $ \mathcal{A}$ is defined by $ \displaystyle{\bigcup_{A \in \mathcal{A}}} A := {x : x

Just discovered Barry Martin’s Hopalong Orbits Visualizer — an excellent abstract visualization, which is rendered in 3D using Hopalong Attractor algorithm, WebGL and Mrdoob’s three.js project. Hop to the source website using your desktop browser (with WebGl and Javascript support) and enjoy the magic. PS: Hopalong Attractor Algorithm Hopalong Attractor predicts the locus of points in 2D using this algorithm That is, $ x= y- \mathrm{sign}{(x)}

Sequence of real numbers A sequence of real numbers (or a real sequence) is defined as a function $ f: \mathbb{N} \to \mathbb{R}$ , where $ \mathbb{N}$ is the set of natural numbers and $ \mathbb{R}$ is the set of real numbers. Thus, $ f(n)=r_n, \ n \in \mathbb{N}, \ r_n \in \mathbb{R}$ is a function which produces a sequence of real numbers $ r_n$ .

This mathematical fallacy is due to a simple assumption, that $ -1=\dfrac{-1}{1}=\dfrac{1}{-1}$ . Proceeding with $ \dfrac{-1}{1}=\dfrac{1}{-1}$ and taking square-roots of both sides, we get: $ \dfrac{\sqrt{-1}}{\sqrt{1}}=\dfrac{\sqrt{1}}{\sqrt{-1}}$ Now, as the Euler’s constant $ i= \sqrt{-1}$ and $ \sqrt{1}=1$ , we can have $ \dfrac{i}{1}=\dfrac{1}{i} \ldots \{1 \}$ $ \Rightarrow i^2=1 \ldots \{2 \}$ . This is complete contradiction to the fact that $ i^2=-1$ . Again,

These study notes on Set Theory, Functions and Real Numbers were written by Gaurav Tiwari when he was studying as a Math undergraduate in 2012-2013. The language is sought to be simple and easy to understand. Further reading material is also provided with this article. If you have any questions, feel free to send a message here. Sets A set is a well defined collection of

Here is an interesting mathematical puzzle alike problem involving the use of Egyptian fractions, whose solution sufficiently uses the basic algebra. Problem Let a, b, c, d and e be five non-zero complex numbers, and; $ a + b + c + d + e = -1$ … (i) $ a^2+b^2+c^2+d^2+e^2=15$ …(ii) $ \dfrac{1}{a} + \dfrac{1}{b} +\dfrac{1}{c} +\dfrac{1}{d} +\dfrac{1}{e}= -1$ …(iii) $ \dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{1}{d^2}+\dfrac{1}{e^2}=15$ …(iv) $ abcde

Last year, I managed to successfully finish Metric Spaces, Basic Topology and other Analysis topics. Starting from the next semester I’ll be learning more pure mathematical topics, like Functional Analysis, Combinatorics and more. The plan is to lead myself to Combinatorics by majoring Functional Analysis and Topology. But before all those, I’ll be studying measure theory and probability this July – August. Probability theory is not as important as Measure

Holi, the festival of colors, is celebrated all over India. Here are some images from the Holi festival, which I thought were worth sharing. Happy Holi! ENJOY READING! Err… viewing. Rangoli Rangoli is one of the most beautiful arts made on festivals in Uttar Pradesh. The below one isn’t that good, but fair enough to be shared. Photo One: Friends This is a photo taken at

The greatest number theorist in mathematical universe, Leonhard Euler had discovered some formulas and relations in number theory, which were based on practices and were correct to limited extent but still stun the mathematicians. The prime generating equation by Euler is a very specific binomial equation on prime numbers and yields more primes than any other relations out there in number theory. Euler told that the

“Irrational numbers are those real numbers which are not rational numbers!” Def.1: Rational Number A rational number is a real number which can be expressed in the form of where $ a$ and $ b$ are both integers relatively prime to each other and $ b$ being non-zero. Following two statements are equivalent to the definition 1. 1. $ x=\frac{a}{b}$ is rational if and only if

If you are aware of elementary facts of geometry, then you might know that the area of a disk with radius $ R$ is $ \pi R^2$ . The radius is actually the measure(length) of a line joining the center of disk and any point on the circumference of the disk or any other circular lamina. Radius for a disk is always the same, irrespective of

Triangle inequality has its name on a geometrical fact that the length of one side of a triangle can never be greater than the sum of the lengths of other two sides of the triangle. If $ a$ , $ b$ and $ c$ be the three sides of a triangle, then neither $ a$ can be greater than $ b+c$ , nor$ b$ can be

Ramanujan (1887-1920) discovered some formulas on algebraic nested radicals. This article is based on one of those formulas. The main aim of this article is to discuss and derive them intuitively. Nested radicals have many applications in Number Theory as well as in Numerical Methods . The simple binomial theorem of degree 2 can be written as: $ {(x+a)}^2=x^2+2xa+a^2 \ \ldots (1)$ Replacing $ a$ by

I was very pleased on reading this news that Government of India has decided to celebrate the upcoming year 2012 as the National Mathematical Year. This is 125th birth anniversary of math-wizard Srinivasa Ramanujan (1887-1920). He is one of the greatest mathematicians India ever produced. Well this is ‘not’ the main reason for appointing 2012 as National Mathematical Year as it is only a tribute to