## Statement

A series $\sum {u_n}$ of positive terms is convergent if from and after some fixed term $\dfrac {u_{n+1}} {u_n} < r < {1}$ , where r is a fixed number. The series is divergent if $\dfrac{u_{n+1}} {u_n} > 1$ from and after some fixed term.

D’ Alembert’s Test is also known as the ratio test of convergence of a series.

### Definitions for Generally Interested Readers

(Definition 1) An infinite series $\sum {u_n}$ i.e. $\mathbf {u_1+u_2+u_3+….+u_n}$ is said to be convergent if $S_n$ , the sum of its first $n$ terms, tends to a finite limit $S$ as n tends to infinity.
We call $S$ the sum of the series, and write $S=\displaystyle {\lim_{n \to \infty} } S_n$ .
Thus an infinite series $\sum {u_n}$ converges to a sum S, if for any given positive number $\epsilon$ , however small, there exists a positive integer $n_0$ such that
$|S_n-S| < \epsilon$ for all $n \ge n_0$ .
(Definition 2)
If $S_n \to \pm \infty$ as $n \to \infty$ , the series is said to be divergent.
Thus, $\sum {u_n}$ is said to be divergent if for every given positive number $\lambda$ , however large, there exists a positive integer $n_0$ such that $|S_n|>\lambda$ for all $n \ge n_0$ .
(Definition 3)
If $S_n$ does not tends to a finite limit, or to plus or minus infinity, the series is called Oscillatory.

## Discussions

Let a series be $\mathbf {u_1+u_2+u_3+…….}$ . We assume that the above inequalities are true.

• From the first part of the statement:
$\dfrac {u_2}{u_1} < r$ , $\dfrac {u_3}{u_2} < r$ ……… where r <1.
Therefore $\mathbf {{u_1+u_2+u_3+….}= u_1 {(1+\frac{u_2}{u_1}+\frac{u_3}{u_1}+….)}}$
$=\mathbf {u_1{(1+\frac{u_2}{u_1}+\frac{u_3}{u_2} \times \frac{u_2}{u_1}+….)}}$
$< \mathbf {u_1(1+r+r^2+…..)}$
Therefore, $\sum{u_n} < u_1 (1+r+r^2+…..)$
or, $\sum{u_n} < \displaystyle{\lim_{n \to \infty}} \dfrac {u_1 (1-r^n)} {1-r}$
Since r<1, therefore as $n \to \infty , \ r^n \to 0$
therefore $\sum{u_n} < \dfrac{u_1} {1-r}$ =k say, where k is a fixed number.
Therefore $\sum{u_n}$ is convergent.
• Since, $\dfrac{u_{n+1}}{u_n} > 1$ then, $\dfrac{u_2}{u_1} > 1$ , $\dfrac{u_3}{u_2} > 1$ …….
Therefore $u_2 > u_1, \ u_3 >u_2>u_1, \ u_4 >u_3 > u_2 >u_1$ and so on.
Therefore $\sum {u_n}=u_1+u_2+u_3+….+u_n$ > $nu_1$ . By taking n sufficiently large, we see that $nu_1$ can be made greater than any fixed quantity.
Hence the series is divergent.

• When $\dfrac {u_{n+1}} {u_n}=1$ , the test fails.
• Another form of the test– The series $\sum {u_n}$ of positive terms is convergent if $\displaystyle {\lim_{n \to \infty}} \dfrac {u_n}{u_{n+1}}$ >1 and divergent if $\displaystyle{\lim_{n \to \infty}} \dfrac {u_n}{u_{n+1}}$ <1.
One should use this form of the test in the practical applications.

A Problem:
Verify whether the infinite series $\dfrac{x}{1.2} + \dfrac {x^2} {2.3} + \dfrac {x^3} {3.4} +….$ is convergent or divergent.

### Solution

We have $u_{n+1}= \dfrac {x^{n+1}}{(n+1)(n+2)}$ and $u_n= \dfrac {x^n} {n(n+1)}$
Therefore $\displaystyle {\lim_{n \to \infty}} \dfrac{u_n} {u_{n+1}} = \displaystyle{\lim_{n \to \infty}} (1+\frac{2}{n}) \frac{1}{x} = \frac{1}{x}$
Hence, when 1/x >1 , i.e., x <1, the series is convergent and when x >1 the series is divergent.
When x=1, $u_n=\dfrac{1} {n(n+1)}=\dfrac {1}{n^2} {(1+1/n)}^{-1}$
or, $u_n=\dfrac{1}{n^2}(1-\frac{1}{n}+ \frac {1}{n^2}-…..)$
Take $\dfrac{1}{n^2}=v_n$ Now $\displaystyle {\lim_{n \to \infty}} \dfrac {u_n}{v_n}=1$ , a non-zero finite quantity.
But $\sum {v_n}=\sum {\frac{1}{n^2}}$ is convergent.
Hence, $\sum {u_n}$ is also Convergent.

Feel free to ask questions, send feedback and even point out mistakes. Great conversations start with just a single word. How to write better comments?
1. Chris pedro says:

I love this digital notebook. It is very helpful to me. Thanks

2. frank says:

Thanks for you support in other to understand this part of D’Alembert’s ratio test. Can you give more examples for understand it more better? thanks.

3. Mariya says:

here is D’ Alembert’s ratio test:

Let Un be the nth term of a positive series such that

lim Un+1/Un = L

Then the series is convergent if L 1.
The test fails to decide the nature of the series if L = 1.

1. Mariya says:

series is convergent if L 1

2. Brilliant Staybirth says:

When we get the result 1′ we have to work this out with other principle…what did you do when you get the result equal to 1??

4. mariya says:

Series is convergent if L is less than 1 and divergent if L is greater than 1

5. ANKIT SHARMA says:

It’s nice. Ratio test has so many forms due to which creates confusion. I applied ratio test in this series

1+ (1/2!)+ (1/3!)+…..
But I found this series to be divergent using ratio test while this series is convergent.

1. Brilliant Staybirth says:

i hate the question having factorial of something in the denominator

6. Samuel Sanchez says:

Thanks for the brilliant explanation . u enjoyed and understood it better than I got in the lecture

7. Sweety says:

Unable to understand

## Milnor wins 2011 Abel Prize

The Norwegian Academy of Science and Letters has decided to award the Abel Prize for 2011 to John Milnor, Institute for Mathematical Sciences, Stony Brook University, New York “for pioneering discoveries in topology, geometry and algebra”. The President of the Norwegian Academy of Science and Letters, Øyvind Østerud, announced the winner of this year’s Abel Prize at the Academy in…

## How to change Differential Equations into Integral Equations?

This post explains the basic method of converting an integral equation into a corresponding differential equation.

## Newton’s Trinity College Notebook is Online!

Cambridge Digital Library had made Newton’s exceptionally great works online. Some times ago they added the Trinity College Notebook by Isaac Newton, which he used to teach in the college in 17th century.     Read More About the Project Here. List of other works of Newton can be found at www.newton.ac.uk/newton.html.

## Meet the Math Blogger : Josh Young from Mathematical Mischief

Every mathematics student is in his own a special case — having his own qualities and snags. A math blogger is even more special.  He is more than just a mathematician or just a blogger. A math blogger is an entertainer… a magician, who devises techniques of making math more readable and even more interesting. There are hundreds of such…

## Chess Problems

In how many ways can two queens, two rooks, one white bishop, one black bishop, and a knight be placed on a standard $8 \times 8$ chessboard so that every position on the board is under attack by at least one piece? Note: The color of a bishop refers to the color of the square on which it sits,…

## Derivative of x squared is 2x or x ? Where is the fallacy?

We all know that the derivative of $x^2$ is 2x. But what if someone proves it to be just x?