## Statement

A series $\sum {u_n}$ of positive terms is convergent if from and after some fixed term $\dfrac {u_{n+1}} {u_n} < r < {1}$ , where r is a fixed number. The series is divergent if $\dfrac{u_{n+1}} {u_n} > 1$ from and after some fixed term.

D’ Alembert’s Test is also known as the ratio test of convergence of a series.

### Definitions for Generally Interested Readers

(Definition 1) An infinite series $\sum {u_n}$ i.e. $\mathbf {u_1+u_2+u_3+….+u_n}$ is said to be convergent if $S_n$ , the sum of its first $n$ terms, tends to a finite limit $S$ as n tends to infinity.
We call $S$ the sum of the series, and write $S=\displaystyle {\lim_{n \to \infty} } S_n$ .
Thus an infinite series $\sum {u_n}$ converges to a sum S, if for any given positive number $\epsilon$ , however small, there exists a positive integer $n_0$ such that
$|S_n-S| < \epsilon$ for all $n \ge n_0$ .
(Definition 2)
If $S_n \to \pm \infty$ as $n \to \infty$ , the series is said to be divergent.
Thus, $\sum {u_n}$ is said to be divergent if for every given positive number $\lambda$ , however large, there exists a positive integer $n_0$ such that $|S_n|>\lambda$ for all $n \ge n_0$ .
(Definition 3)
If $S_n$ does not tends to a finite limit, or to plus or minus infinity, the series is called Oscillatory

## Discussions

Let a series be $\mathbf {u_1+u_2+u_3+…….}$ . We assume that the above inequalities are true.

• From the first part of the statement:
$\dfrac {u_2}{u_1} < r$ , $\dfrac {u_3}{u_2} < r$ ……… where r <1.
Therefore $\mathbf {{u_1+u_2+u_3+….}= u_1 {(1+\frac{u_2}{u_1}+\frac{u_3}{u_1}+….)}}$
$=\mathbf {u_1{(1+\frac{u_2}{u_1}+\frac{u_3}{u_2} \times \frac{u_2}{u_1}+….)}}$
$< \mathbf {u_1(1+r+r^2+…..)}$
Therefore, $\sum{u_n} < u_1 (1+r+r^2+…..)$
or, $\sum{u_n} < \displaystyle{\lim_{n \to \infty}} \dfrac {u_1 (1-r^n)} {1-r}$
Since r<1, therefore as $n \to \infty , \ r^n \to 0$
therefore $\sum{u_n} < \dfrac{u_1} {1-r}$ =k say, where k is a fixed number.
Therefore $\sum{u_n}$ is convergent.
• Since, $\dfrac{u_{n+1}}{u_n} > 1$ then, $\dfrac{u_2}{u_1} > 1$ , $\dfrac{u_3}{u_2} > 1$ …….
Therefore $u_2 > u_1, \ u_3 >u_2>u_1, \ u_4 >u_3 > u_2 >u_1$ and so on.
Therefore $\sum {u_n}=u_1+u_2+u_3+….+u_n$ > $nu_1$ . By taking n sufficiently large, we see that $nu_1$ can be made greater than any fixed quantity.
Hence the series is divergent.

• When $\dfrac {u_{n+1}} {u_n}=1$ , the test fails.
• Another form of the test– The series $\sum {u_n}$ of positive terms is convergent if $\displaystyle {\lim_{n \to \infty}} \dfrac {u_n}{u_{n+1}}$ >1 and divergent if $\displaystyle{\lim_{n \to \infty}} \dfrac {u_n}{u_{n+1}}$ <1.
One should use this form of the test in the practical applications.

A Problem:
Verify whether the infinite series $\dfrac{x}{1.2} + \dfrac {x^2} {2.3} + \dfrac {x^3} {3.4} +….$ is convergent or divergent.

### Solution

We have $u_{n+1}= \dfrac {x^{n+1}}{(n+1)(n+2)}$ and $u_n= \dfrac {x^n} {n(n+1)}$
Therefore $\displaystyle {\lim_{n \to \infty}} \dfrac{u_n} {u_{n+1}} = \displaystyle{\lim_{n \to \infty}} (1+\frac{2}{n}) \frac{1}{x} = \frac{1}{x}$
Hence, when 1/x >1 , i.e., x <1, the series is convergent and when x >1 the series is divergent.
When x=1, $u_n=\dfrac{1} {n(n+1)}=\dfrac {1}{n^2} {(1+1/n)}^{-1}$
or, $u_n=\dfrac{1}{n^2}(1-\frac{1}{n}+ \frac {1}{n^2}-…..)$
Take $\dfrac{1}{n^2}=v_n$ Now $\displaystyle {\lim_{n \to \infty}} \dfrac {u_n}{v_n}=1$ , a non-zero finite quantity.
But $\sum {v_n}=\sum {\frac{1}{n^2}}$ is convergent.
Hence, $\sum {u_n}$ is also Convergent.

Feel free to ask questions, send feedback and even point out mistakes. Great conversations start with just a single word. How to write better comments?
1. Chris pedro says:

I love this digital notebook. It is very helpful to me. Thanks

2. frank says:

Thanks for you support in other to understand this part of D’Alembert’s ratio test. Can you give more examples for understand it more better? thanks.

3. Mariya says:

here is D’ Alembert’s ratio test:

Let Un be the nth term of a positive series such that

lim Un+1/Un = L

Then the series is convergent if L 1.
The test fails to decide the nature of the series if L = 1.

1. Mariya says:

series is convergent if L 1

2. Brilliant Staybirth says:

When we get the result 1′ we have to work this out with other principle…what did you do when you get the result equal to 1??

4. mariya says:

Series is convergent if L is less than 1 and divergent if L is greater than 1

5. ANKIT SHARMA says:

It’s nice. Ratio test has so many forms due to which creates confusion. I applied ratio test in this series

1+ (1/2!)+ (1/3!)+…..
But I found this series to be divergent using ratio test while this series is convergent.

1. Brilliant Staybirth says:

i hate the question having factorial of something in the denominator

6. Samuel Sanchez says:

Thanks for the brilliant explanation . u enjoyed and understood it better than I got in the lecture

7. Sweety says:

Unable to understand

This site uses Akismet to reduce spam. Learn how your comment data is processed.

## Essential Steps of Problem Solving in Mathematical Sciences

Learning how to solve problems in mathematics is simply to know what to look for.   Mathematics problems often require established procedures. To become a problem solver, one must know What, When and How to apply them. To identify procedures, you have to be familiar with the different problem situations. You must also be good in gathering information, extracting strategies…

## 11-12-13 – Last such sequence of the century

11th December 2013 (or in short 11-12-13) is just a few hours away here. It’s the last date of the 21st century with  such an extraordinary pattern of numbers.  In any calendar of the world, such date will be seen in 22nd century after 87 years and 54 days from today — on February 3, 2101, if all kind of date…

## Real Sequences

Sequence of real numbers A sequence of real numbers (or a real sequence) is defined as a function $f: \mathbb{N} \to \mathbb{R}$ , where $\mathbb{N}$ is the set of natural numbers and $\mathbb{R}$ is the set of real numbers. Thus, $f(n)=r_n, \ n \in \mathbb{N}, \ r_n \in \mathbb{R}$ is a function which produces a sequence…

## Four way valid expression

People really like to twist the numbers and digits bringing fun into life. For example, someone asks, “how much is two and two?” : the answer should be four according to basic (decimal based) arithmetic. But the same  with base three (in ternary number system) equals to 11. Two and Two also equals to Twenty Two. Similarly there are many ways you can…

## Meet the Math Blogger : Josh Young from Mathematical Mischief

Every mathematics student is in his own a special case — having his own qualities and snags. A math blogger is even more special.  He is more than just a mathematician or just a blogger. A math blogger is an entertainer… a magician, who devises techniques of making math more readable and even more interesting. There are hundreds of such…