The Collatz Conjecture is one of the Unsolved problems in mathematics, especially in Number Theory. The Collatz Conjecture is also termed as ** 3n+1 conjecture, Ulam Conjecture, Kakutani’s Problem, Thwaites Conjecture, Hasse’s Algorithm, Syracuse Problem.**

### Statement:

Start with any positive integer.

•Halveit, if it is even.

Or

•tripleit andadd 1, if it is odd.If you keep repeating this procedure, you

shallreach the number 1 at last.

### Illustrations

» Starting with 1 — we get 1 in **first** step.

» Starting with 2 (even) — we get 1 in **second** step and in **one operation** $ 2 \to 1 $

» Starting with 3 (odd) — we get 1 in **8th** step $ 3 \to 10 \to 5 \to 16 \to 8 \to 4 \to 2 \to 1 $

Similarly, you can check this conjecture for every positive integer; you should get 1 at last according to this conjecture.

### Mathematical Illustration

Let $ \mathbf {n} $ be a positive integer. Then it either be even or odd.

**A. If n is even:** Divide $ \mathbf {n} $ by $ \mathbf {2} $ and get $ \mathbf {\frac {n}{2} } $ . Is it 1? — conjecture applies on that positive integer. Again if it is even — redo the same work. If it is odd, then— see next step!

**B. If n is odd: ** Multiply $ \mathbf n $ by $ \mathbf 3 $ & then add $ \mathbf 1 $ to find $ \mathbf 3n+1 $ . Is it 1? — conjecture applies on that positive integer. Again if it is even — redo the same work you did in **A**. If it is odd, then— redo the work of **B**!

### Problem in this Conjecture

This conjecture has been tried on various kind of numbers, and those numbers have satisfied the Collatz Conjecture. But the question is that —

Is this conjecture applicable to every positive integer?

### Note

Mathematicians have found no good use of Collatz Conjecture in Mathematics, so it is considered as a useless conjecture. But overall, it is unsolved — and we can’t leave any unknown or unsolved problems & principles in Math.

Feel free to ask questions, send feedback and even point out mistakes. Great conversations start with just a single word.

__How to write better comments?__
## 4 comments

Hey there! Quick question that’s totally off topic.

Do you know how to make your site mobile friendly?

My web site looks weird when viewing from my iPhone.

I’m trying to find a theme or plugin that might be able to correct this issue.

If you have any recommendations, please share.

Appreciate it!

FYI: On The Proof of Collatz Conjecture

Please visit link:

https://www.physforum.com/index.php?s=500f704ca24585493afe6cd909aa0d8e&showtopic=119839

Bon appetit! đ

I can solve collatz problem