Interesting Facts about Blood and Blood Cells

Like all humans have red colored blood, there are few organisms which have varying blood colors. Spiders and octopus have blue color blood, cockroaches have white/colorless blood, grasshopper, leeches, and some varieties of earthworm have green color blood and so on. Apart from these, there are more facts about the blood. In this article, few interesting facts about Blood and Blood Cells of the human body. Blood is the only fluid connective tissue in the human body and it plays…

Solving Integral Equations (4) : Integral Equations into Differential Equations

Introduction In earlier parts we discussed about the basics of integral equations and how they can be derived from ordinary differential equations. In second part, we also solved a linear integral equation using trial method. Now we are in a situation from where main job of solving Integral Equations can be started. But before we go ahead to that mission, it will be better to learn how can integral equations be converted into differential equations. Integral Equation ⇔ Differential Equation The method of converting…

Unlocked Lock

New Math Series: Selected Topics in Functional Analysis

This series of study notes is aimed for post-graduate (M.A/M.Sc.) students of Indian & international universities. The study of functional analysis can be started after basic topology and set theory courses. In this introductory article we will start with some elementary yet important definitions and notations from analysis. We will finish this article with the definition of Norm & Normed Linear spaces derivedfrom the notions of linear spaces. An elementary treatise of examples and their completeness of Normed (linear) Spaces will…


Symmetry in Physical Laws

'Symmetry' has a special meaning in physics. A picture is said to be symmetrical if one side is somehow the same as the other side. Precisely, a thing is symmetrical if one can subject it to a certain operation and it appears exactly the same after the operation. For example, if we look at a base that is left and right symmetrical, then turn it 180° around the vertical axis it looks the same. Newton's laws of motion do not…

Statistical Physics: Macrostates and Microstates

Consider some (4, say) distinguishable particles. If we wish to distribute them into two exactly similar compartments in an open box, then the priori probability for a particle of going into any one of the compartments will exactly 1/2 as both compartments are identical. If the four particles are named as a , b, c and d and the compartments as compartment 1 and compartment (2), then following table can be made listing all the possible arrangements. $ Compartment (1)…


Solving Integral Equations (2) – Square Integrable Functions, Norms, Trial Method

Square Integrable function or quadratically integrable function $\mathfrak{L}_2$ function A function $y(x)$ is said to be square integrable or $\mathfrak{L}_2$ function on the interval $(a,b)$ if $$\displaystyle {\int_a^b} {|y(x)|}^2 dx <\infty$$ or $$\displaystyle {\int_a^b} y(x) \bar{y}(x) dx <\infty$$. For further reading, I suggest this Wikipedia page. $y(x)$ is then also called 'regular function'. The kernel $K(x,t)$ , a function of two variables is an $\mathfrak{L_2}$ - function if atleast one of the following is true: $\int_{x=a}^b \int_{t=a}^b |K(x,t)|^2 dx dt <\infty$ $\int_{t=a}^b |K(x,t)|^2 dx…

Integral Equation

Solving Integral Equations – (1) Definitions and Types

If you have finished your course in Calculus and Differential Equations, you should head to your next milestone: the Integral Equations. This marathon series (planned to be of 6 or 8 parts) is dedicated to interactive learning of integral equations for the beginners —starting with just definitions and demos —and the pros— taking it to the heights of problem solving. Comments and feedback are invited. Also read: Part- II Square Integrable Functions, Norms, Trial Method Part- III Changing Differential Equations…


Examination Strategies : Tactics & Tips

Every student or graduate knows how hard the first experience of passing exams is. Preliminary preparation starves the nervous system and the physical condition of the human body, however, the exam itself is always a stressful situation, which requires a candidate a great manifestation of mental and physical abilities. Therefore, just the knowledge of a subject is not enough for the exam. The examinee needs to have high self-organization, ability to keep his emotions and absolute confidence in his abilities.…


Complete Elementary Analysis of Nested radicals

This is a continuation of the series of summer projects sponsored by department of science and technology, government of India. In this project work, I have worked to collect and expand what Ramanujan did with Nested Radicals and summarized all important facts into the one article. In the article, there are formulas, formulas and only formulas — I think this is exactly what Ramanujan is known for. This article not only deals with Ramanujan’s initial work on Nested Radicals but…

Real Sequences

Sequence of real numbers A sequence of real numbers (or a real sequence) is defined as a function $ f: \mathbb{N} \to \mathbb{R}$ , where $ \mathbb{N}$ is the set of natural numbers and $ \mathbb{R}$ is the set of real numbers. Thus, $ f(n)=r_n, \ n \in \mathbb{N}, \ r_n \in \mathbb{R}$ is a function which produces a sequence of real numbers $ r_n$ . It's customary to write a sequence as form of functions in brackets, e.g.; $…

Set Theory, Functions and Real Number System


In mathematics, Set is a well defined collection of distinct objects. The theory of Set as a mathematical discipline rose up with George Cantor, German mathematician, when he was working on some problems in Trigonometric series and series of real numbers, after he recognized the importance of some distinct collections and intervals.

Cantor defined the set as a ‘plurality conceived as a unity’ (many in one; in other words, mentally putting together a number of things and assigning them into one box).

Mathematically, a Set $ S$ is ‘any collection’ of definite, distinguishable objects of our universe, conceived as a whole. The objects (or things) are called the elements or members of the set $ S$ . Some sets which are often pronounced in real life are, words like ”bunch”, ”herd”, ”flock” etc. The set is a different entity from any of its members.

For example, a flock of birds (set) is not just only a single bird (member of the set). ‘Flock’ is just a mathematical concept with no material existence but ‘Bird’ or ‘birds’ are real.

Representing sets

Sets are represented in two main ways: