This mathematical fallacy is due to a simple assumption, that $ -1=\dfrac{-1}{1}=\dfrac{1}{-1}$ . Proceeding with $ \dfrac{-1}{1}=\dfrac{1}{-1}$ and taking square-roots of both sides, we get: $ \dfrac{\sqrt{-1}}{\sqrt{1}}=\dfrac{\sqrt{1}}{\sqrt{-1}}$ Now, as the Euler’s constant $ i= \sqrt{-1}$ and $ \sqrt{1}=1$ , we can have $ \dfrac{i}{1}=\dfrac{1}{i} \ldots \{1 \}$ $ \Rightarrow i^2=1 \ldots \{2 \}$ . This is complete contradiction to the …

# Category: Complex Analysis

## Triangle Inequality

Triangle inequality has its name on a geometrical fact that the length of one side of a triangle can never be greater than the sum of the lengths of other two sides of the triangle. If $ a$ , $ b$ and $ c$ be the three sides of a triangle, then neither $ a$ can be greater than $ …

## Numbers – The Basic Introduction

If mathematics was a language, logic was the grammar, numbers should have been the alphabet. There are many types of numbers we use in mathematics, but at a broader aspect we may categorize them in two categories: 1. Countable Numbers 2. Uncountable Numbers The numbers which can be counted in nature are called Countable Numbers and the numbers which can …

## Everywhere Continuous Non-differentiable Function

Weierstrass had drawn attention to the fact that there exist functions which are continuous for every value of $ x$ but do not possess a derivative for any value. We now consider the celebrated function given by Weierstrass to show this fact. It will be shown that if $ f(x)= \displaystyle{\sum_{n=0}^{\infty} } b^n \cos (a^n \pi x) \ \ldots (1) …