Astronaut Image

Smart Fallacies: i=1, 1= 2 and 1= 3

This mathematical fallacy is due to a simple assumption, that $ -1=\dfrac{-1}{1}=\dfrac{1}{-1}$ . Proceeding with $ \dfrac{-1}{1}=\dfrac{1}{-1}$ and taking square-roots of both sides, we get: $ \dfrac{\sqrt{-1}}{\sqrt{1}}=\dfrac{\sqrt{1}}{\sqrt{-1}}$ Now, as the Euler's constant $ i= \sqrt{-1}$…

Yes No Puzzle

A Yes No Puzzle

This is not just math, but a very good test for linguistic reasoning. If you are serious about this test and think that you’ve a sharp [at least average] brain then read the statement (only)…

You might be thinking why am I writing about an individual number? Actually, in previous year annual exams, my registration number was 381654729. Which is just an ‘ordinary’ 9-digit long number. I never cared about it- and forgot it after exam results were announced. But today morning, when I opened “Mathematics Today” magazine’s October 2010, page 8; I was brilliantly shocked. 381654729 is a nine digit number with each of the digits from 1 to 9 appearing once. The whole number is divisible by 9. If you remove the right-most digit, the remaining eight-digit number is divisible by 8. Again removing the next-right-most digit leaves a seven-digit number that is divisible by 7. Similarly, removing next-rightmost digit leaves a six-digit number that is divisible by 6. This property continues all the way down to one digit.

Further research on this number turned out to have a name “Poly-divisible Number.”

Mathematical Wonders happen with Mathematicians. 🙂