• Prove that $ {(x+y)}^n-x^n-y^n$ is divisible by $ xy(x+y) \times (x^2+xy+y^2)$ if $ n$ is an odd number not divisible by $ 3$ .
  • Prove that $ {(x+y)}^n-x^n-y^n$ is divisible by $ xy(x+y) \times {(x^2+xy+y^2)}^2$ if $ n \equiv \pmod{6}1$

Solution

1.Considering the given expression as a polynomial in $ y$ , let us put $ y=0 $ . We see that at $ y=0 $ the polynomial vanishes (for any $ x$ ). Therefore our polynomial is divisible by $ y$ . Similarly, it is divisible by $ x$ as well. Thus the polynomial is divisible by $ xy$ .
To prove that it is divisible by $ x+y $ , put $ x+y=0 \ {or} \ y=-x $ . It is evident that for odd n we have : $ {(x+(-x)}^n-x^n-{(-x)}^n = 0 $ for $ y=-x $ .
Consequently, our polynomial is divisible by $ x+y $ . It only remains to prove the divisibility of the polynomial by $ x^2 +xy+y^2$ , which also be written as $ (y-x\epsilon)(y-x{\epsilon}^2 ) $ where $ \epsilon^2+\epsilon+1=0 $ .
For this purpose it only remains to replace $ y $ first by $ x \epsilon $ and then by $ x\epsilon^2 $ to make sure that with these substitutions the polynomial vanishes. Since, by hypothesis, $ n$ is not divisible by 3, it follows that $ n=3l+1 \ or \ 3l+2 $ , for every $ l \in \mathbb{Z} $ , in which $ 3l+1$ is not acceptable since $ n$ is odd from the problem. At $ y=x\epsilon $ the polynomial attains the following value
$ {(x+x\epsilon)}^n-x^n-{(x\epsilon)}^n=x^n [{(1+\epsilon)}^n-1-\epsilon^n] \\ =x^n {(-\epsilon^2)}^n -1 -\epsilon^n …. $ since ($ 1+\epsilon + \epsilon^2=0 $ ) substituting $ n=3l+2 $ we get
$ 1+\epsilon+\epsilon^2 =0 $
Likewise we prove that at $ y=x\epsilon^2$ the polynomial vanishes as well, and consequently, its by divisibility by $ xy(x+y) \times (x^2+xy+y^2) $ is proved.

2.To prove the second statement, let us proceed as follows. Let the quantities $ {-x, -y, \, and \, x+y} $ be the roots of a cubic equation $ X^3-rX^2-pX-q=0 $ . Then by virtue of the known relations between the roots of an equation and its coefficients we have $ r=-x-y-(x+y)=0 \\ -p=xy-x(x+y)-y(x+y)$ or $ p=x^2+xy+y^2$ and $ q=xy(x+y)$ .
Thus, $ -x, \, -y \, x+y$ are the roots of the equation $ X^3-pX-q=0 $ where $ p=x^2+xy+y^2$ and $ q=xy(x+y) $
Put $ {(-x)}^n-{(-y)}^n+{(x+y)}^n=S_n$ . Among successive values of $ S_n$ , there exist the relationship $ S_{n+3}=pS_{n+1}+qS_n$ ,: $ S_1$ being equal to zero.
Let us prove that $ S_n$ is divisible by $ p^2$ if $ n \equiv 1 \pmod{6}$ using the method of mathematical induction. Suppose $ S_n $ is divisible by $ p^2 $ and prove that then $ S_{n+6} $ is also divisible by $ p^2$ .
So, using this relation we get that
$ S_{n+6}=p(pS_{n+2} + qS_{n+1}) + q(pS_{n+1}+qS_n) \\ =p^2S_{n+2}+2pqS_{n+1}+q^2S_n$ .
Since, by supposition, $ S_n$ is divisible by $ p^2$ , it suffices to prove that $ S_{n+1}$ is divisible by $ p$ . Thus we only have to prove than $ S_n={(x+y)}^n+(-x)^n+(-y)^n$ is divisible by $ p=x^2+xy+y^2$ if $ n \equiv 2 \pmod{6}$ , we easily prove our assertion. And so, assuming that $ S_n$ is divisible by $ p^2$ , we have proved that (from induction) $ S_{n+6}$ is also divisible by $ p^2$ . Consequently $ S_n ={(x+y)}^n+(-x)^n+(-y)^n={(x+y)}^n-x^n-y^n$ for any $ n \equiv 1 \pmod{6}$ is divisible by $ p^2={(x^2+xy+y^2)}^2 $ .
Now it only remains to prove its divisibility by $ x+y $ and by $ xy$ , which is quite elementary.

 


Feel free to ask questions, send feedback and even point out mistakes. Great conversations start with just a single word. How to write better comments?
Leave a Reply

Your email address will not be published. Required fields are marked *

You May Also Like

This Prime Generating Product generates successive prime factors

Any integer greater than 1 is called a prime number if and only if its positive factors are 1 and the number p itself. The basic ideology involved in this post is flawed and the post has now been moved to Archives. – The Editor Prime Generating Formulas We all know how hard it is to predict a formula for prime numbers! They have…

Social Networks for Math Majors

Math or Mathematics is not as difficult as it is thought to be. Mathematical Patterns, Structures, Geometry and its use in everyday life make it beautiful. ‘Math majors’ term generally include Math students, Math professors and researchers or Mathematicians. Internet has always been a tonic for learners and whole internet is supposed to be a social network, in which one…

Best Time Saving Mathematics Formulas & Theorems

Formulas are the most important part of mathematics and as we all know one is the backbone of the latter. Considering there are thousands of mathematical formulas to help people develop analytical approach and solve problems easily — there are some that go beyond. Some formulas aren’t just timesaving but those also do wonders. In this article I have collected…

Albert Einstein and His introduction to the Concept of Relativity

Albert Einstein This name need not be explained. Albert Einstein is considered to be one of the best physicists in the human history. The twentieth century has undoubtedly been the most significant for the advance of science, in general, and Physics, in particular. And Einstein is the most luminated star of the 20th century. He literally created cm upheaval by…

Consequences of Light Absorption – The Jablonski Diagram

All about the Light Absorption’s theory on the basis of Jablonski diagram. According to the Grotthus – Draper Law of photo-chemical activation: Only that light which is absorbed by a system, can bring a photo-chemical change. However it is not true that all the kind of light(s) that are absorbed could bring a photo-chemical change. The absorption of light may result in…