• Prove that $ {(x+y)}^n-x^n-y^n$ is divisible by $ xy(x+y) \times (x^2+xy+y^2)$ if $ n$ is an odd number not divisible by $ 3$ .
  • Prove that $ {(x+y)}^n-x^n-y^n$ is divisible by $ xy(x+y) \times {(x^2+xy+y^2)}^2$ if $ n \equiv \pmod{6}1$


1.Considering the given expression as a polynomial in $ y$ , let us put $ y=0 $ . We see that at $ y=0 $ the polynomial vanishes (for any $ x$ ). Therefore our polynomial is divisible by $ y$ . Similarly, it is divisible by $ x$ as well. Thus the polynomial is divisible by $ xy$ .
To prove that it is divisible by $ x+y $ , put $ x+y=0 \ {or} \ y=-x $ . It is evident that for odd n we have : $ {(x+(-x)}^n-x^n-{(-x)}^n = 0 $ for $ y=-x $ .
Consequently, our polynomial is divisible by $ x+y $ . It only remains to prove the divisibility of the polynomial by $ x^2 +xy+y^2$ , which also be written as $ (y-x\epsilon)(y-x{\epsilon}^2 ) $ where $ \epsilon^2+\epsilon+1=0 $ .
For this purpose it only remains to replace $ y $ first by $ x \epsilon $ and then by $ x\epsilon^2 $ to make sure that with these substitutions the polynomial vanishes. Since, by hypothesis, $ n$ is not divisible by 3, it follows that $ n=3l+1 \ or \ 3l+2 $ , for every $ l \in \mathbb{Z} $ , in which $ 3l+1$ is not acceptable since $ n$ is odd from the problem. At $ y=x\epsilon $ the polynomial attains the following value
$ {(x+x\epsilon)}^n-x^n-{(x\epsilon)}^n=x^n [{(1+\epsilon)}^n-1-\epsilon^n] \\ =x^n {(-\epsilon^2)}^n -1 -\epsilon^n …. $ since ($ 1+\epsilon + \epsilon^2=0 $ ) substituting $ n=3l+2 $ we get
$ 1+\epsilon+\epsilon^2 =0 $
Likewise we prove that at $ y=x\epsilon^2$ the polynomial vanishes as well, and consequently, its by divisibility by $ xy(x+y) \times (x^2+xy+y^2) $ is proved.

2.To prove the second statement, let us proceed as follows. Let the quantities $ {-x, -y, \, and \, x+y} $ be the roots of a cubic equation $ X^3-rX^2-pX-q=0 $ . Then by virtue of the known relations between the roots of an equation and its coefficients we have $ r=-x-y-(x+y)=0 \\ -p=xy-x(x+y)-y(x+y)$ or $ p=x^2+xy+y^2$ and $ q=xy(x+y)$ .
Thus, $ -x, \, -y \, x+y$ are the roots of the equation $ X^3-pX-q=0 $ where $ p=x^2+xy+y^2$ and $ q=xy(x+y) $
Put $ {(-x)}^n-{(-y)}^n+{(x+y)}^n=S_n$ . Among successive values of $ S_n$ , there exist the relationship $ S_{n+3}=pS_{n+1}+qS_n$ ,: $ S_1$ being equal to zero.
Let us prove that $ S_n$ is divisible by $ p^2$ if $ n \equiv 1 \pmod{6}$ using the method of mathematical induction. Suppose $ S_n $ is divisible by $ p^2 $ and prove that then $ S_{n+6} $ is also divisible by $ p^2$ .
So, using this relation we get that
$ S_{n+6}=p(pS_{n+2} + qS_{n+1}) + q(pS_{n+1}+qS_n) \\ =p^2S_{n+2}+2pqS_{n+1}+q^2S_n$ .
Since, by supposition, $ S_n$ is divisible by $ p^2$ , it suffices to prove that $ S_{n+1}$ is divisible by $ p$ . Thus we only have to prove than $ S_n={(x+y)}^n+(-x)^n+(-y)^n$ is divisible by $ p=x^2+xy+y^2$ if $ n \equiv 2 \pmod{6}$ , we easily prove our assertion. And so, assuming that $ S_n$ is divisible by $ p^2$ , we have proved that (from induction) $ S_{n+6}$ is also divisible by $ p^2$ . Consequently $ S_n ={(x+y)}^n+(-x)^n+(-y)^n={(x+y)}^n-x^n-y^n$ for any $ n \equiv 1 \pmod{6}$ is divisible by $ p^2={(x^2+xy+y^2)}^2 $ .
Now it only remains to prove its divisibility by $ x+y $ and by $ xy$ , which is quite elementary.


Feel free to ask questions, send feedback and even point out mistakes. Great conversations start with just a single word. How to write better comments?
Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

You May Also Like

Statistical Physics: Macrostates and Microstates

Consider some (4, say) distinguishable particles. If we wish to distribute them into two exactly similar compartments in an open box, then the priori probability for a particle of going into any one of the compartments will exactly 1/2 as both compartments are identical. If the four particles are named as a , b, c and d and the compartments…

Numbers – The Basic Introduction

If mathematics was a language, logic was the grammar, numbers should have been the alphabet. There are many types of numbers we use in mathematics, but at a broader aspect we may categorize them in two categories: 1. Countable Numbers 2. Uncountable Numbers The numbers which can be counted in nature are called Countable Numbers and the numbers which can…
Read More

Do you multiply this way!

Before my college days I used to multiply this way. But as time passed, I learned new things. In a Hindi magazine named “Bhaskar Lakshya”, I read an article in which a columnist ( I can’t remember his name) suggested how to multiply in single line (row). That was a magic to me.  I found doing multiplications this way, very faster –…

Fermat Numbers

Fermat Number, a class of numbers, is an integer of the form $ F_n=2^{2^n} +1 \ \ n \ge 0$ . For example: Putting $ n := 0,1,2 \ldots$ in $ F_n=2^{2^n}$ we get $ F_0=3$ , $ F_1=5$ , $ F_2=17$ , $ F_3=257$ etc. Fermat observed that all the integers $ F_0, F_1, F_2, F_3, \ldots$ were prime…
Read More

We are now using MathJax!

The very first trouble I faced, while moving the blog from WordPress.com hosting to WordPress.org, was due to a bug in WordPress’s OPML importer. The ‘importer’ messed up with all LaTeX equations on this site — just by deleting a single but very important string from all LaTeX codes. If you are really moving your WordPress content from one blog…
Google PageRank Update
Read More

Google PageRank Updated – We became better

Google PageRank (PR), the most popular base 10 website popularity algorithm, has received an unexpected update on this December 6 –exactly 10 months and 2 days after the last update was released. My blog has regained its PR4 rating, which was gone to PR1 after I upgraded the site-domain from subdomain wpgaurav.wordpress.com to gauravtiwari.org in November 2011. In last PR Update (February…