Home » Posts tagged 'Solve'

# Tag Archives: Solve

## Six Puzzles

Assume that the English letters are digits (from 0 to 9 ) and they satisfy the given relations, then you have to solve each equation for these letters.

For Example:
$ABCDE \times ABCDE = FDBABCDE$ can have a solution:
$09376 \times 09376 = 87909376$

Similarly, Try these:

1. $ABCDEEABCD$ $\times$ $FEC$ = $AAAAAAAAAAAA$

2. $(A+B+C+D+E)$ $\times$ $(A+B+C+D+E)$ $\times$ $(A+B+C+D+E)$ = $ABCDE$

3. $6 \times ABCDEF =DEFABC$

4. $ABCDEABCDEABCDE$ = $C \times CCCCCGGGGH \times ABCDE$

5. $ABCDEABCDE$ $= FF \times GHGF \times 86485$

# Solution:

1. $8547008547 \times 104$ $=888888888888$
2. $(1+9+6+8+3) \times (1+9+6+8+3) \times (1+9+6+8+3)$ $=19683$
3. $6 \times 14857$ $857142$
4. $283512835128351$ $=3 \times 3333366667 \times 28351$
5. $8648586485$ $=11 \times 9091 \times 86485$

Puzzle Idea: Mr. Sawinder Singh, Gurdaspur, Punjab (INDIA)
Note:
There may be many other solutions for these puzzles too.

## Solving Ramanujan’s Puzzling Problem

Consider a sequence of functions as follows:-

$f_1 (x) = \sqrt {1+\sqrt {x} }$
$f_2 (x) = \sqrt{1+ \sqrt {1+2\sqrt {x} } }$

$f_3 (x) = \sqrt {1+ \sqrt {1+2 \sqrt {1+3 \sqrt {x} } } }$

……and so on to

$f_n (x) = \sqrt {1+\sqrt{1+2 \sqrt {1+3 \sqrt {\ldots \sqrt {1+n \sqrt {x} } } } } }$

Evaluate this function as n tends to infinity.

Or logically:

Find

$\displaystyle{\lim_{n \to \infty}} f_n (x)$ .